ﻻ يوجد ملخص باللغة العربية
The winding number has been widely used as an invariant for diagnosing topological phases in one-dimensional chiral-symmetric systems. We put forward a real-space representation for the winding number. Remarkably, our method reproduces an exactly quantized winding number even in the presence of disorders that break translation symmetry but preserve chiral symmetry. We prove that our real-space representation of the winding number, the winding number defined through the twisted boundary condition, and the real-space winding number derived previously in [Phys. Rev. Lett. 113, 046802 (2014)], are equivalent in the thermodynamic limit at half filling. Our method also works for the case of filling less than one half, where the winding number is not necessarily quantized. Around the disorder-induced topological phase transition, the real-space winding number has large fluctuations for different disordered samples, however, its average over an ensemble of disorder samples may well identify the topological phase transition. Besides, we show that our real-space winding number can be expressed as a Bott index, which has been used to represent the Chern number for two-dimensional systems.
We introduce novel higher-order topological phases in chiral-symmetric systems (class AIII of the ten-fold classification), most of which would be misidentified as trivial by current theories. These phases are protected by multipole winding numbers,
Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter including various excitations of collective modes predicted in particl
We introduce the topological mirror excitonic insulator as a new type of interacting topological crystalline phase in one dimension. Its mirror-symmetry-protected topological properties are driven by exciton physics, and it manifests in the quantized
We study the characterization and realization of higher-order topological Anderson insulator (HOTAI) in non-Hermitian systems, where the non-Hermitian mechanism ensures extra symmetries as well as gain and loss disorder.We illuminate that the quadrup
The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. F