ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral-symmetric higher-order topological phases protected by multipole winding number invariants

257   0   0.0 ( 0 )
 نشر من قبل Wladimir A. Benalcazar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce novel higher-order topological phases in chiral-symmetric systems (class AIII of the ten-fold classification), most of which would be misidentified as trivial by current theories. These phases are protected by multipole winding numbers, bulk integer topological invariants that in 2D and 3D are built from sublattice multipole moment operators, as defined herein. The integer value of a multipole winding number indicates the number of degenerate zero-energy states localized at each corner of a crystal. These phases are generally boundary-obstructed and robust in the presence of disorder.



قيم البحث

اقرأ أيضاً

We discuss how strongly interacting higher-order symmetry protected topological (HOSPT) phases can be characterized from the entanglement perspective: First, we introduce a topological many-body invariant which reveals the non-commutative algebra bet ween flux operator and $C_n$ rotations. We argue that this invariant denotes the angular momentum carried by the instanton which is closely related to the discrete Wen-Zee response and fractional corner charge. Second, we define a new entanglement property, dubbed `higher-order entanglement, to scrutinize and differentiate various higher-order topological phases from a hierarchical sequence of the entanglement structure. We support our claims by numerically studying a super-lattice Bose-Hubbard model that exhibits different HOSPT phases.
The winding number has been widely used as an invariant for diagnosing topological phases in one-dimensional chiral-symmetric systems. We put forward a real-space representation for the winding number. Remarkably, our method reproduces an exactly qua ntized winding number even in the presence of disorders that break translation symmetry but preserve chiral symmetry. We prove that our real-space representation of the winding number, the winding number defined through the twisted boundary condition, and the real-space winding number derived previously in [Phys. Rev. Lett. 113, 046802 (2014)], are equivalent in the thermodynamic limit at half filling. Our method also works for the case of filling less than one half, where the winding number is not necessarily quantized. Around the disorder-induced topological phase transition, the real-space winding number has large fluctuations for different disordered samples, however, its average over an ensemble of disorder samples may well identify the topological phase transition. Besides, we show that our real-space winding number can be expressed as a Bott index, which has been used to represent the Chern number for two-dimensional systems.
76 - Wei Jia , Lin Zhang , Long Zhang 2020
We propose a new theory to characterize equilibrium topological phase with non-equilibrium quantum dynamics by introducing the concept of high-order topological charges, with novel phenomena being predicted. Through a dimension reduction approach, we can characterize a $d$-dimensional ($d$D) integer-invariant topological phase with lower-dimensional topological number quantified by high-order topological charges, of which the $s$th-order topological charges denote the monopoles confined on the $(s-1)$th-order band inversion surfaces (BISs) that are $(d-s+1)$D momentum subspaces. The bulk topology is determined by the $s$th order topological charges enclosed by the $s$th-order BISs. By quenching the system from trivial phase to topological regime, we show that the bulk topology of post-quench Hamiltonian can be detected through a high-order dynamical bulk-surface correspondence, in which both the high-order topological charges and high-order BISs are identified from quench dynamics. This characterization theory has essential advantages in two aspects. First, the highest ($d$th) order topological charges are characterized by only discrete signs of spin-polarization in zero dimension (i.e. the $0$th Chern numbers), whose measurement is much easier than the $1$st-order topological charges that are characterized by the continuous charge-related spin texture in higher dimensional space. Secondly, a more striking result is that a first-order high integer-valued topological charge always reduces to multiple highest-order topological charges with unit charge value, and the latter can be readily detected in experiment. The two fundamental features greatly simplify the characterization and detection of the topological charges and also topological phases, which shall advance the experimental studies in the near future.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons trate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the proce dure to fermionic SPT phases described by the Gu-Wen super-cohomology model. We then show that we can define topological invariants as partition functions on certain closed orientable/spin manifolds equipped with a flat connection. The invariants are able to distinguish all phases described within the respective models. Finally, we establish a connection to invariants obtained from braiding statistics of the corresponding gauged theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا