ترغب بنشر مسار تعليمي؟ اضغط هنا

First geodetic observations using new VLBI stations ASKAP-29 and WARK12M

289   0   0.0 ( 0 )
 نشر من قبل Leonid Petrov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of a successful 7 hour 1.4 GHz VLBI experiment using two new stations, ASKAP-29 located in Western Australia and WARK12M located on the North Island of New Zealand. This was the first geodetic VLBI observing session with the participation of these new stations. We have determined the positions of ASKAP-29 and WARK12M. Random errors on position estimates are 150-200 mm for the vertical component and 40-50 mm for the horizontal component. Systematic errors caused by the unmodeled ionosphere path delay may reach 1.3 m for the vertical component.

قيم البحث

اقرأ أيضاً

We report the results of a successful 24 hour 6.7 GHz VLBI experiment using the 30 meter radio telescope WARK30M near Warkworth, New Zealand, recently converted from a radio telecommunications antenna, and two radio telescopes located in Australia: H obart 26-m and Ceduna 30-m. The geocentric position of WARK30M is determined with a 100 mm uncertainty for the vertical component and 10 mm for the horizontal components. We report correlated flux densities at 6.7 GHz of 175 radio sources associated with Fermi gamma-ray sources. A parsec scale emission from the radio source 1031-837 is detected, and its association with the gamma-ray object 2FGL J1032.9-8401 is established with a high likelihood ratio. We conclude that the new Pacific area radio telescope WARK30M is ready to operate for scientific projects.
128 - Oleg Titov , Hana Krasna 2018
Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity $V$ of 30 km/s, VLBI proves to be a handy tool to detect the subtle effects of the special and general relativity theory with a magnitude of $(V/textrm{c})^2$. The theoretical correction for the second order terms reaches up to 300~ps, and it is implemented in the geodetic VLBI group delay model. The total contribution of the second order terms splits into two effects - the variation of the Earth scale, and the deflection of the apparent position of the radio source. The Robertson-Mansouri-Sexl (RMS) generalization of the Lorenz transformation is used for many modern tests of the special relativity theory. We develop an alteration of the RMS formalism to probe the Lorenz invariance with the geodetic VLBI data. The kinematic approach implies three parameters (as a function of the moving reference frame velocity) and the standard Einstein synchronisation. A generalised relativistic model of geodetic VLBI data includes all three parameters that could be estimated. Though, since the modern laboratory Michelson-Morley and Kennedy-Thorndike experiments are more accurate than VLBI technique, the presented equations may be used to test the VLBI group delay model itself.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calib ration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of $700-1800$ MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $sim 15$ arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^circ$ made over a 288 MHz band centred at 887.5 MHz.
We extend previous works by considering two additional radio frequencies (K band and X/Ka band) with the aim to study the frequency dependence of the source positions and its potential connection with the physical properties of the underlying AGN. We compared the absolute source positions measured at four different wavelengths, that is, the optical position from the Gaia Early Data Release 3 (EDR3) and the radio positions at the dual S/X, X/Ka combinations and at K band, as available from the third realization of the International Celestial Reference Frame (ICRF3), for 512 common sources. We first aligned the three ICRF3 individual catalogs onto the Gaia EDR3 frame and compare the optical-to-radio offsets before and after the alignment. Then we studied the correlation of optical-to-radio offsets with the observing (radio) frequency, source morphology, magnitude, redshift, and source type. The deviation among optical-to-radio offsets determined in the different radio bands is less than 0.5 mas, but there is statistical evidence that the optical-to-radio offset is smaller at K band compared to S/X band for sources showing extended structures. The optical-to-radio offset was found to statistically correlate with the structure index. Large optical-to-radio offsets appear to favor faint sources but are well explained by positional uncertainty, which is also larger for these sources. We did not detect any statistically significant correlation between the optical-to-radio offset and the redshift. The radio source structure might also be a major cause for the radio-to-optical offset. For the alignment of with the Gaia celestial reference frame, the S/X band frame remains the preferred choice at present.
The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will expl oit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا