ﻻ يوجد ملخص باللغة العربية
The effects of pressure generated in a liquid medium, clamp, pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient and low temperature, magnetoresistance in CaFe2As2 are presented. The T - P phase diagram, including the observation of a complete superconducting transition in resistivity, delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial, c-axis, pressure are in general agreement with the liquid medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of non-hydrostatic components of pressure in inducing superconductivity in CaFe2As2.
We report magnetoresistivity measurements on strongly underdoped YBa_2Cu_3O_x (x=6.25, 6.36) single crystals in applied magnetic fields H || c-axis. We identify two different contributions to both in-plane and out-of-plane magnetoresistivities. The f
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivi
FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with
We report on the crystal growth and characterization of ABi3 (A=Ba,Sr) superconductors. Single crystals of both compounds were grown by the self-flux technique. BaBi3 crystallized in a tetragonal structure with space group P4/mmm and SrBi3 in a cubic
Magnetic correlations in the paramagnetic phase of CaFe2As2 (T_N=172 K) have been examined by means of inelastic neutron scattering from 180 K (~ 1.05 T_N) up to 300 K (~1.8 T_N). Despite the first-order nature of the magnetic ordering, strong but sh