ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropical Fock-Goncharov coordinates for $mathrm{SL}_3$-webs on surfaces I: construction

70   0   0.0 ( 0 )
 نشر من قبل Daniel C. Douglas
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Sikora-Westbury. These basis elements come from the trace functions associated to certain tri-valent graphs embedded in the surface $mathfrak{S}$. We show that this basis can be naturally indexed by positive integer coordinates, defined by Knutson-Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock-Goncharov, to the tropical points at infinity of the dual version of the character variety.



قيم البحث

اقرأ أيضاً

112 - Daniel C. Douglas , Zhe Sun 2020
In a companion paper (arXiv 2011.01768) we constructed non-negative integer coordinates $Phi_mathcal{T}$ for a distinguished collection $mathcal{W}_{3, widehat{S}}$ of $mathrm{SL}_3$-webs on a finite-type punctured surface $widehat{S}$, depending on an ideal triangulation $mathcal{T}$ of $widehat{S}$. We prove that these coordinates are natural with respect to the choice of triangulation, in the sense that if a different triangulation $mathcal{T}^prime$ is chosen then the coordinate change map relating $Phi_mathcal{T}$ and $Phi_{mathcal{T}^prime}$ is a prescribed tropical cluster transformation. Moreover, when $widehat{S}=Box$ is an ideal square, we provide a topological geometric description of the Hilbert basis (in the sense of linear programming) of the non-negative integer cone $Phi_mathcal{T}(mathcal{W}_{3, Box}) subset mathbb{Z}_{geq 0}^{12}$, and we prove that this cone canonically decomposes into 42 sectors corresponding topologically to 42 families of $mathrm{SL}_3$-webs in the square.
190 - S. Gilles 2021
Fock and Goncharov introduced cluster ensembles, providing a framework for coordinates on varieties of surface representations into Lie groups, as well as a complete construction for groups of type $A_n$. Later, Zickert, Le, and Ip described, using d iffering methods, how to apply this framework for other Lie group types. Zickert also showed that this framework applies to triangulated $3$-manifolds. We present a complete, general construction, based on work of Fomin and Zelevinsky. In particular, we complete the picture for the remaining cases: Lie groups of types $F_4$, $E_6$, $E_7$, and $E_8$.
118 - Daniel C. Douglas 2021
We generalize Bonahon and Wongs $mathrm{SL}_2(mathbb{C})$-quantum trace map to the setting of $mathrm{SL}_3(mathbb{C})$. More precisely, for each non-zero complex number $q$, we associate to every isotopy class of framed oriented links $K$ in a thick ened punctured surface $mathfrak{S} times (0, 1)$ a Laurent polynomial $mathrm{Tr}_lambda^q(K) = mathrm{Tr}_lambda^q(K)(X_i^q)$ in $q$-deformations $X_i^q$ of the Fock-Goncharov coordinates $X_i$ for a higher Teichm{u}ller space, depending on the choice of an ideal triangulation $lambda$ of the surface $mathfrak{S}$. Along the way, we propose a definition for a $mathrm{SL}_n(mathbb{C})$-version of this invariant.
168 - Daniel C. Douglas 2021
We show that the quantized Fock-Goncharov monodromy matrices satisfy the relations of the quantum special linear group $mathrm{SL}_n^q$. The proof employs a quantum version of the technology invented by Fock-Goncharov called snakes. This relationship between higher Teichmuller theory and quantum group theory is integral to the construction of a $mathrm{SL}_n$-quantum trace map for knots in thickened surfaces, developed in a companion paper (arXiv:2101.06817).
These notes grew out of our learning and applying the methods of Fock and Goncharov concerning moduli spaces of real projective structures on surfaces with ideal triangulations. We give a self-contained treatment of Fock and Goncharovs description of the moduli space of framed marked properly convex projective structures with minimal or maximal ends, and deduce results of Marquis and Goldman as consequences. We also discuss the Poisson structure on moduli space and its relationship to Goldmans Poisson structure on the character variety.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا