ﻻ يوجد ملخص باللغة العربية
We examine the dynamics of electron beams that, in free space, are self-accelerating, in the presence of an additional magnetic field. We focus our attention in the case of Airy beams that follow parabolic trajectories and in generalized classes of beams associated with power-law trajectories. We study the interplay between beam self-acceleration and the circular motion caused by the magnetic field. In the case of Airy beams, using an integral representation, we find closed-form solutions for the electron wavefunction. We also derive asymptotic formulas for the beam trajectories both for Airy beams and for self-accelerating power-law beams. A ray optics description is rather useful for the interpretation of the beam dynamics. Our results are in excellent comparison with direct numerical simulations.
In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subje
We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving b
A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees
Long-distance collimation of fast electron beams generated by laser-metallic-wire targets has been observed in recent experiments, while the mechanism behind this phenomenon remains unclear. In this work, we investigate in detail the laser-wire inter
We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelera