ﻻ يوجد ملخص باللغة العربية
A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.
We examine the Seidel aberrations of thin spherical lenses composed of media with refractive index not restricted to be positive. We find that consideration of this expanded parameter space allows reduction or elimination of more aberrations than is
Vector vortex beams have played a fundamental role in the better understanding of coherence and polarization. They are described by spatially inhomogeneous polarization states, which present a rich optical mode structure that has attracted much atten
We examine the dynamics of electron beams that, in free space, are self-accelerating, in the presence of an additional magnetic field. We focus our attention in the case of Airy beams that follow parabolic trajectories and in generalized classes of b
Usual Gaussian beams are particular scalar solutions to the paraxial Helmholtz equation, which neglect the vector nature of light. In order to overcome this inconvenience, Simon et al. (J. Opt. Soc. Am. A 1986, 3, 536-540) found a paraxial solution t
We present a quantum optics approach for describing stimulated parametric down conversion in the two type-I crystal sandwich configuration, which allows for parametric interaction of vector vortex beams. We analyze the conditions for which phase conj