ﻻ يوجد ملخص باللغة العربية
We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving bending with sub-wavelength features, and the Poynting vector of the main lobe displays a turn of more than 90 degrees. We show that these accelerating beams are self-healing, analyze their properties, and compare to the paraxial Airy beams. Finally, we present the new family of periodic accelerating beams which can be constructed from our solutions.
We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree circular arc, moving laterally by 14 mum over a 28 mum propagation length. This is the highest degree of transverse acceleration
Vector vortex beams possess a topological property that derives both from the spatially varying amplitude of the field and also from its varying polarization. This property arises as a consequence of the inherent Skyrmionic nature of such beams and i
We report,to the best of our knowledge, the first observation of concentrating paraxial beams of light in a linear nondispersive medium. We have generated this intriguing class of light beams, recently predicted by one of us, in both one- and two-dim
Fundamental and applied concepts concerning the ability of light beams to carry a certain mechanical angular momentum with respect to the propagation axis are reviewed and discussed. Following issues are included: Historical reference; Angular mo
The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the T