ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل مفصل لانهيار 32Ar

Detailed study of the decay of 32Ar

703   0   0.0 ( 0 )
 نشر من قبل Bertram Blank
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In an experiment performed at the SPIRAL1 facility of GANIL, the beta decay of 32Ar has been studied by means of the Silicon Cube device associated with germanium clover detectors from the EXOGAM array. Beta-delayed protons and gamma rays have been observed and allowed the determination of all relevant decay branches. The Gamow-Teller strength distribution is compared to shell-model calculations and excellent agreement is found. The Fermi strength is inline with expectations. A quasi-complete decay scheme of 32Ar is established.



قيم البحث

اقرأ أيضاً

We report on high-statistics data from the $beta^-$ decay of the $^{46}$K $J^{pi}$ = 2$^-$ ground state taken with the GRIFFIN spectrometer located at the TRIUMF-ISAC facility. In total, 199 $gamma$ rays and 42 excited states were placed in the level scheme, and from the observed $beta$ feeding and angular correlations of pairs of cascading $gamma$ rays, it was possible to assign spins and parities to excited states and determine mixing ratios for selected $gamma$ rays. The level structure of $^{46}$Ca is compared to theoretical predictions from a microscopic valence-space Hamiltonian derived from two- (NN) and three-nucleon (3N) forces. These calculations are in reasonable agreement with the experimental data and indicate that the protons in this region are not as inert as would be expected for semi-magic nuclei.
A beta-decay study of Cu-77 has been performed at the ISOLDE mass separator with the aim to deduce its beta-decay properties and to obtain spectroscopic information on Zn-77. Neutron-rich copper isotopes were produced by means of proton- or neutron-i nduced fission reactions on U-238. After the production, Cu-77 was selectively laser ionized, mass separated and sent to different detection systems where beta-gamma and beta-n coincidence data were collected. We report on the deduced half-live, decay scheme, and possible spin assignment of 77Cu.
180 - Z. Kohley , T. Baumann , D. Bazin 2013
A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. The decay of 26O -> 24O+n+n was examined as it had been predicted to have an appreciable lifetime due to the unique structure of the neutron-ric h oxygen isotopes. The half-life of 26O was extracted as 4.5^{+1.1}_{-1.5}(stat.) +/- 3 (sys.) ps. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity.
The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = left[ 6.81 pm 0.01,left(mbox{stat}right) ^{+0.38}_{-0.40},left(mbox{sy st}right) right] times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of n=2,3,7, as well as constraints on Lorentz invariance violation and on the bosonic neutrino contribution to the two-neutrino double beta decay mode are obtained.
The kinematics of two-neutron emission following the $beta$-decay of $^{11}$Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and $gamma$-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron were rejected using a filter tested on the $beta$-1n emitter $^9$Li. A large cross-talk rejection rate is obtained ($> 95 %$) over most of the energy range of interest. Application to $^{11}$Li data leads to a significant number of events interpreted as $beta$-2n decay. A discrete neutron line at $approx$ 2 MeV indicates sequential two-neutron emission, possibly from the unbound state at 10.6 MeV excitation energy in $^{11}$Be.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا