ﻻ يوجد ملخص باللغة العربية
A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. The decay of 26O -> 24O+n+n was examined as it had been predicted to have an appreciable lifetime due to the unique structure of the neutron-rich oxygen isotopes. The half-life of 26O was extracted as 4.5^{+1.1}_{-1.5}(stat.) +/- 3 (sys.) ps. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity.
Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron co
Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the deca
A two-neutron unbound excited state of $^{24}$O was populated through a (d,d) reaction at 83.4 MeV/nucleon. A state at $E = 715 pm 110$ (stat) $pm 45 $ (sys) keV with a width of $Gamma < 2$ MeV was observed above the two-neutron separation energy pla
The kinematics of two-neutron emission following the $beta$-decay of $^{11}$Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors
The two-neutron unbound ground state resonances of $^{26}$O and $^{16}$Be were populated using one-proton knockout reactions from $^{27}$F and $^{17}$B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy