ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

102   0   0.0 ( 0 )
 نشر من قبل Victor Tretyak
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = left[ 6.81 pm 0.01,left(mbox{stat}right) ^{+0.38}_{-0.40},left(mbox{syst}right) right] times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of n=2,3,7, as well as constraints on Lorentz invariance violation and on the bosonic neutrino contribution to the two-neutrino double beta decay mode are obtained.



قيم البحث

اقرأ أيضاً

We report the results of a search for the neutrinoless double-$beta$ decay (0$ ubetabeta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$ ubet abeta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0 ubetabeta)>1.1 times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $< m_{ u} > < 0.3-0.9$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$ ubetabeta$ decays are also given. Searching for high-energy double electron events in all suitable sources of the detector, no event in the energy region [3.2-10] MeV is observed for an exposure of 47 kg.y.
Double-beta decays of $^{100}$Mo from the 6.0195-year exposure of a 6.914 kg high-purity sample were recorded by the NEMO-3 experiment that searched for neutrinoless double-beta decays. These ultra-rare transitions to $^{100}$Ru have a half-life of a pproximately $7times10^{18}$ years, and have been used to conduct the first ever search for periodic variations of this decay mode. The Lomb-Scargle periodogram technique, and its error-weighted extension, were employed to look for periodic modulations of the half-life. Monte Carlo modeling was used to study the modulation sensitivity of the data over a broad range of amplitudes and frequencies. Data show no evidence of modulations with amplitude greater than 2.5% in the frequency range of $0.33225,{rm y^{-1}}$ to $365.25,{rm y^{-1}}$.
188 - R. Arnold , C. Augier , J.D. Baker 2015
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.91 4$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$cdot$yr. We perform a detailed study of the expected background in the $0 ubetabeta$ signal region and find no evidence of $0 ubetabeta$ decays in the data. The level of observed background in the $0 ubetabeta$ signal region $[2.8-3.2]$ MeV is $0.44 pm 0.13$ counts/yr/kg, and no events are observed in the interval $[3.2-10]$ MeV. We therefore derive a lower limit on the half-life of $0 ubetabeta$ decays in $^{100}$Mo of $T_{1/2}(0 ubetabeta)> 1.1 times 10^{24}$ yr at the $90%$ Confidence Level, under the hypothesis of light Majorana neutrino exchange. Depending on the model used for calculating nuclear matrix elements, the limit for the effective Majorana neutrino mass lies in the range $langle m_{ u} rangle < 0.33$--$0.62$ eV. We also report constraints on other lepton-number violating mechanisms for $0 ubetabeta$ decays.
316 - J.Argyriades , R.Arnold , C.Augier 2009
Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg yr, the obtained 2vbb decay half-life measurement is [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10^19 yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2vbb half-life and is 0.049 +/- 0.002. Constraints on 0vbb decay have also been set.
In the double beta decay experiment NEMO~3 a precise knowledge of the background in the signal region is of outstanding importance. This article presents the methods used in NEMO~3 to evaluate the backgrounds resulting from most if not all possible o rigins. It also illustrates the power of the combined tracking-calorimetry technique used in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا