ﻻ يوجد ملخص باللغة العربية
A 325 MHz aluminum prototype of a spatially periodic rf quadrupole focusing linac was developed at the Institute of Modern Physics, Chinese Academy of Sciences, as a promising candidate for the front end of a high-current linac. It consists of an alternating series of crossbar H-type drift tubes and rf quadrupole sections. Owing to its special geometry, cavity fabrication is a major hurdle for its engineering development and application. In this paper, we report the detailed mechanical design of this structure and describe its fabrication process, including machining, assembly, and inspection. The field distribution was measured by the bead-pull technique. The results show that the field errors of both the accelerating and focusing fields are within an acceptable range. A tuning scheme for this new structure is proposed and verified. The cold test process and results are presented in detail. The development of this prototype provides valuable guidance for the application of the spatially periodic rf quadrupole structure.
The J-PARC linac was consist of 324MHz low-{beta} section and 972MHz high-{beta} section. There is a total of 48 stations. And each station was equipped with an independent LLRF (Low-Level Radio Frequency) system to realize an accelerating field stab
The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve
A buncher cavity has been developed for the muons accelerated by a radio-frequency quadrupole linac (RFQ). The buncher cavity is designed for $beta=v/c=0.04$ at an operational frequency of 324 MHz. It employs a double-gap structure operated in the TE
Within the framework of the European, project MYRTE (MYRRHA Research and Transmutation Endeavour) of the H2020 program, a 4-Rods RFQ (Radio Frequency Quadrupole) has been designed at 176.1 MHz RFQ for accelerating up to 4 mA protons in CW (Continuous
Modern accelerator front ends almost exclusively include radio-frequency quadrupoles for initial capture and focusing of the low-energy beam. Dynamics in the RFQ define the longitudinal bunch parameters. Simulation of the SNS RFQ with PARMTEQ seeded