ﻻ يوجد ملخص باللغة العربية
Within the framework of the European, project MYRTE (MYRRHA Research and Transmutation Endeavour) of the H2020 program, a 4-Rods RFQ (Radio Frequency Quadrupole) has been designed at 176.1 MHz RFQ for accelerating up to 4 mA protons in CW (Continuous Wave) operation from 30 keV up to 1.5 MeV. A LLRF prototype has been developed to regulate the amplitude and the phase of the accelerator field into the RFQ and the frequency of the RFQ controlling the motor of the frequency tuner. The facility at Louvain-La-Neuve will be presented with a focus on the LLRF system used and some preliminary results.
The first phase of the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) project, MINERVA, was launched in September 2018. Through collaboration with the SCK-CEN, IN2P3 laboratories take in charge the developments of several p
The J-PARC linac was consist of 324MHz low-{beta} section and 972MHz high-{beta} section. There is a total of 48 stations. And each station was equipped with an independent LLRF (Low-Level Radio Frequency) system to realize an accelerating field stab
A low level radio frequency (LLRF) control system is designed and constructed at Peking University, which is for the DC-SRF photo injector operating at 2K. Besides with continuous wave (CW), the system is also reliable with pulsed RF and pulsed beam,
As part of the PIP-II Injector Experiment (PXIE) accelerator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H- ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, i
The Mini-EUSO telescope is designed by the JEM-EUSO Collaboration to observe the UV emission of the Earth from the vantage point of the International Space Station (ISS) in low Earth orbit. The main goal of the mission is to map the Earth in the UV,