ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Fermi-Surface Morphology of CeRhIn$_5$ across the Putative Field-Induced Quantum Critical Point

73   0   0.0 ( 0 )
 نشر من قبل Ilya Sheikin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive de Haas--van Alphen (dHvA) study of the heavy-fermion material CeRhIn$_5$ in magnetic fields up to 70~T. Several dHvA frequencies gradually emerge at high fields as a result of magnetic breakdown. Among them is the thermodynamically important $beta_1$ branch, which has not been observed so far. Comparison of our angule-dependent dHvA spectra with those of the non-$4f$ compound LaRhIn$_5$ and with band-structure calculations evidences that the Ce $4f$ electrons in CeRhIn$_5$ remain localized over the whole field range. This rules out any significant Fermi-surface reconstruction, either at the suggested nematic phase transition at $B^{*}approx$ 30~T or at the putative quantum critical point at $B_c simeq$ 50~T. Our results rather demonstrate the robustness of the Fermi surface and the localized nature of the 4$f$ electrons inside and outside of the antiferromagnetic phase.



قيم البحث

اقرأ أيضاً

203 - L. Jiao , Y. Chen , Y. Kohama 2015
Conventional, thermally-driven continuous phase transitions are described by universal critical behaviour that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-dri ven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behaviour remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (B$_{c0}simeq$ 50 T) in the heavy-fermion metal CeRhIn$_5$. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B$_0^*simeq$ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn$_5$ suggest that the Fermi-surface change at B$_0^*$ is associated with a localized to itinerant transition of the Ce-4f electrons in CeRhIn$_5$. Taken in conjunction with pressure data, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn$_5$, a significant step towards the derivation of a universal phase diagram for QCPs.
We have measured de Haas-van Alphen oscillations of Cr$_{1-x}$V$_x$, $0 le x le 0.05$, at high fields for samples on both sides of the quantum critical point at $x_c=0.035$. For all samples we observe only those oscillations associated with a single small hole band with magnetic breakdown orbits of the reconstructed Fermi surface evident for $x<x_c$. The absence of oscillations from Fermi surface sheets most responsible for the spin density wave (SDW) in Cr for $x>x_c$ is further evidence for strong fluctuation scattering of these charge carriers well into the paramagnetic regime. We find no significant mass enhancement of the carriers in the single observed band at any $x$. An anomalous field dependence of the dHvA signal for our $x=0.035$ crystal at particular orientations of the magnetic field is identified as due to magnetic breakdown that we speculate results from a field induced SDW transition at high fields.
Quantum criticality in the normal and superconducting state of the heavy-fermion metal CeCoIn$_5$ is studied by measurements of the magnetic Gr{u}neisen ratio, $Gamma_H$, and specific heat in different field orientations and temperatures down to 50 m K. Universal temperature over magnetic field scaling of $Gamma_H$ in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.
Temperature dependence of the $^{115}$In-NMR spectra of CeRhIn$_5$ is studied with the external magnetic fields 10$^circ$ off the [100] and [001] axes. Our detailed analyses confirm that the AFM3 phase breaks the four-fold spin symmetry with the comm ensurate ordering vector of $Q = (0.5, 0.5,0.25)$. Based on the observation of anistropic hyperfine fields, we also propose the symmetry lowering of the electronic structure in the AFM3 phase.
We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce$_{0.91}$Yb$_{0.09}$CoIn$_5$. Non-Fermi liquid to Fermi liquid crossovers are clearly obse rved in the temperature dependence of the Sommerfeld coefficient $gamma$ and resistivity data. Furthermore, we show that the Yb-doped sample with $x=0.09$ exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of $gamma$. Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature $T_{c3}approx 7$ K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا