ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn$_5$

208   0   0.0 ( 0 )
 نشر من قبل Huiqiu Yuan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional, thermally-driven continuous phase transitions are described by universal critical behaviour that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behaviour remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (B$_{c0}simeq$ 50 T) in the heavy-fermion metal CeRhIn$_5$. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B$_0^*simeq$ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn$_5$ suggest that the Fermi-surface change at B$_0^*$ is associated with a localized to itinerant transition of the Ce-4f electrons in CeRhIn$_5$. Taken in conjunction with pressure data, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn$_5$, a significant step towards the derivation of a universal phase diagram for QCPs.



قيم البحث

اقرأ أيضاً

We study the doping evolution of the electronic structure in the normal phase of high-$T_c$ cuprates. Electronic structure and Fermi surface of cuprates with single CuO$_2$ layer in the unit cell like La$_{2-x}$Sr$_x$CuO$_4$ have been calculated by t he LDA+GTB method in the regime of strong electron correlations (SEC) and compared to ARPES and quantum oscillations data. We have found two critical concentrations, $x_{c1}$ and $x_{c2}$, where the Fermi surface topology changes. Following I.M. Lifshitz ideas of the quantum phase transitions (QPT) of the 2.5-order we discuss the concentration dependence of the low temperature thermodynamics. The behavior of the electronic specific heat $delta(C/T) sim (x - x_c)^{1/2}$ is similar to the Loram and Cooper experimental data in the vicinity of $x_{c1} approx 0.15$.
The Ce compounds CeCoIn$_5$ and CeRhIn$_5$ are ideal model systems to study the competition of antiferromagnetism (AF) and superconductivity (SC). Here we discuss the pressure--temperature and magnetic field phase diagrams of both compounds. In CeRhI n$_5$ the interesting observation is that in zero magnetic field a coexistence AF+SC phase exist inside the AF phase below the critical pressure $p_{rm c}^star approx 2$ GPa. Above $p_{rm c}^star$ AF is suppressed in zero field but can be re-induced by applying a magnetic field. The collapse of AF under pressure coincides with the abrupt change of the Fermi surface. In CeCoIn$_5$ a new phase appears at low temperatures and high magnetic field (LTHF) which vanishes at the upper critical field $H_{rm c2}$. In both compounds the paramagnetic pair breaking effect dominates at low temperature. We discuss the evolution of the upper critical field under high pressure of both compounds and propose a simple picture of the glue of reentrant magnetism to the upper critical field in order to explain the interplay of antiferromagnetic order and superconductivity.
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn$_5$ under pressure $P=1.75$ GPa. The onset of the magnetic order is evidenced from a clear split of $^{115}$In-NQR spect rum due to the spontaneous internal field below the Neel temperature $T_N=2.5$ K. Simultaneously, bulk SC below $T_c=2.0$ K is demonstrated by the observation of the Meissner diamagnetism signal whose size is the same as in the exclusively superconducting phase. These results indicate that the AFM coexists homogeneously with the SC at a microscopic level.
72 - S. Mishra , J. Hornung , M. Raba 2021
We report a comprehensive de Haas--van Alphen (dHvA) study of the heavy-fermion material CeRhIn$_5$ in magnetic fields up to 70~T. Several dHvA frequencies gradually emerge at high fields as a result of magnetic breakdown. Among them is the thermodyn amically important $beta_1$ branch, which has not been observed so far. Comparison of our angule-dependent dHvA spectra with those of the non-$4f$ compound LaRhIn$_5$ and with band-structure calculations evidences that the Ce $4f$ electrons in CeRhIn$_5$ remain localized over the whole field range. This rules out any significant Fermi-surface reconstruction, either at the suggested nematic phase transition at $B^{*}approx$ 30~T or at the putative quantum critical point at $B_c simeq$ 50~T. Our results rather demonstrate the robustness of the Fermi surface and the localized nature of the 4$f$ electrons inside and outside of the antiferromagnetic phase.
220 - L. Jiao , H. Q. Yuan , Y. Kohama 2013
We report measurements of magnetic quantum oscillations and specific heat at low temperatures across a field-induced antiferromagnetic quantum critical point (QCP)(B_{c0}approx50T) of the heavy-fermion metal CeRhIn_5. A sharp magnetic-field induced F ermi surface reconstruction is observed inside the antiferromagnetic phase. Our results demonstrate multiple classes of QCPs in the field-pressure phase diagram of this heavy-fermion metal, pointing to a universal description of QCPs. They also suggest that robust superconductivity is promoted by unconventional quantum criticality of a fluctuating Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا