ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Cellular Recurrent Network for Efficient Analysis of Time-Series Data with Spatial Information

86   0   0.0 ( 0 )
 نشر من قبل Lasitha Vidyaratne
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient processing of large-scale time series data is an intricate problem in machine learning. Conventional sensor signal processing pipelines with hand engineered feature extraction often involve huge computational cost with high dimensional data. Deep recurrent neural networks have shown promise in automated feature learning for improved time-series processing. However, generic deep recurrent models grow in scale and depth with increased complexity of the data. This is particularly challenging in presence of high dimensional data with temporal and spatial characteristics. Consequently, this work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to efficiently process complex multi-dimensional time series data with spatial information. The cellular recurrent architecture in the proposed model allows for location-aware synchronous processing of time series data from spatially distributed sensor signal sources. Extensive trainable parameter sharing due to cellularity in the proposed architecture ensures efficiency in the use of recurrent processing units with high-dimensional inputs. This study also investigates the versatility of the proposed DCRNN model for classification of multi-class time series data from different application domains. Consequently, the proposed DCRNN architecture is evaluated using two time-series datasets: a multichannel scalp EEG dataset for seizure detection, and a machine fault detection dataset obtained in-house. The results suggest that the proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.

قيم البحث

اقرأ أيضاً

Time series forecasting based on deep architectures has been gaining popularity in recent years due to their ability to model complex non-linear temporal dynamics. The recurrent neural network is one such model capable of handling variable-length inp ut and output. In this paper, we leverage recent advances in deep generative models and the concept of state space models to propose a stochastic adaptation of the recurrent neural network for multistep-ahead time series forecasting, which is trained with stochastic gradient variational Bayes. In our model design, the transition function of the recurrent neural network, which determines the evolution of the hidden states, is stochastic rather than deterministic as in a regular recurrent neural network; this is achieved by incorporating a latent random variable into the transition process which captures the stochasticity of the temporal dynamics. Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling. We test our model on a wide range of datasets from finance to healthcare; results show that the stochastic recurrent neural network consistently outperforms its deterministic counterpart.
146 - Samit Bhanja , Abhishek Das 2018
For the last few years it has been observed that the Deep Neural Networks (DNNs) has achieved an excellent success in image classification, speech recognition. But DNNs are suffer great deal of challenges for time series forecasting because most of t he time series data are nonlinear in nature and highly dynamic in behaviour. The time series forecasting has a great impact on our socio-economic environment. Hence, to deal with these challenges its need to be redefined the DNN model and keeping this in mind, data pre-processing, network architecture and network parameters are need to be consider before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of time series forecasting is heavily depend on the data normalization technique. In this paper, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN to forecast the time series. Here the Deep Recurrent Neural Network (DRNN) is used to predict the closing index of Bombay Stock Exchange (BSE) and New York Stock Exchange (NYSE) by using BSE and NYSE time series data.
Electronic health records (EHR) consist of longitudinal clinical observations portrayed with sparsity, irregularity, and high-dimensionality, which become major obstacles in drawing reliable downstream clinical outcomes. Although there exist great nu mbers of imputation methods to tackle these issues, most of them ignore correlated features, temporal dynamics and entirely set aside the uncertainty. Since the missing value estimates involve the risk of being inaccurate, it is appropriate for the method to handle the less certain information differently than the reliable data. In that regard, we can use the uncertainties in estimating the missing values as the fidelity score to be further utilized to alleviate the risk of biased missing value estimates. In this work, we propose a novel variational-recurrent imputation network, which unifies an imputation and a prediction network by taking into account the correlated features, temporal dynamics, as well as the uncertainty. Specifically, we leverage the deep generative model in the imputation, which is based on the distribution among variables, and a recurrent imputation network to exploit the temporal relations, in conjunction with utilization of the uncertainty. We validated the effectiveness of our proposed model on two publicly available real-world EHR datasets: PhysioNet Challenge 2012 and MIMIC-III, and compared the results with other competing state-of-the-art methods in the literature.
Real-world clinical time series data sets exhibit a high prevalence of missing values. Hence, there is an increasing interest in missing data imputation. Traditional statistical approaches impose constraints on the data-generating process and decoupl e imputation from prediction. Recent works propose recurrent neural network based approaches for missing data imputation and prediction with time series data. However, they generate deterministic outputs and neglect the inherent uncertainty. In this work, we introduce a unified Bayesian recurrent framework for simultaneous imputation and prediction on time series data sets. We evaluate our approach on two real-world mortality prediction tasks using the MIMIC-III and PhysioNet benchmark datasets. We demonstrate strong performance gains over state-of-the-art (SOTA) methods, and provide strategies to use the resulting probability distributions to better assess reliability of the imputations and predictions.
For health prognostic task, ever-increasing efforts have been focused on machine learning-based methods, which are capable of yielding accurate remaining useful life (RUL) estimation for industrial equipment or components without exploring the degrad ation mechanism. A prerequisite ensuring the success of these methods depends on a wealth of run-to-failure data, however, run-to-failure data may be insufficient in practice. That is, conducting a substantial amount of destructive experiments not only is high costs, but also may cause catastrophic consequences. Out of this consideration, an enhanced RUL framework focusing on data self-generation is put forward for both non-cyclic and cyclic degradation patterns for the first time. It is designed to enrich data from a data-driven way, generating realistic-like time-series to enhance current RUL methods. First, high-quality data generation is ensured through the proposed convolutional recurrent generative adversarial network (CR-GAN), which adopts a two-channel fusion convolutional recurrent neural network. Next, a hierarchical framework is proposed to combine generated data into current RUL estimation methods. Finally, the efficacy of the proposed method is verified through both non-cyclic and cyclic degradation systems. With the enhanced RUL framework, an aero-engine system following non-cyclic degradation has been tested using three typical RUL models. State-of-art RUL estimation results are achieved by enhancing capsule network with generated time-series. Specifically, estimation errors evaluated by the index score function have been reduced by 21.77%, and 32.67% for the two employed operating conditions, respectively. Besides, the estimation error is reduced to zero for the Lithium-ion battery system, which presents cyclic degradation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا