ترغب بنشر مسار تعليمي؟ اضغط هنا

Local classical MAX-CUT algorithm outperforms $p=2$ QAOA on high-girth regular graphs

119   0   0.0 ( 0 )
 نشر من قبل Kunal Marwaha
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kunal Marwaha




اسأل ChatGPT حول البحث

The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyze QAOA$_2$ for the maximum cut problem (MAX-CUT), deriving a graph-size-independent expression for the expected cut fraction on any $D$-regular graph of girth $> 5$ (i.e. without triangles, squares, or pentagons). We show that for all degrees $D ge 2$ and every $D$-regular graph $G$ of girth $> 5$, QAOA$_2$ has a larger expected cut fraction than QAOA$_1$ on $G$. However, we also show that there exists a $2$-local randomized classical algorithm $A$ such that $A$ has a larger expected cut fraction than QAOA$_2$ on all $G$. This supports our conjecture that for every constant $p$, there exists a local classical MAX-CUT algorithm that performs as well as QAOA$_p$ on all graphs.



قيم البحث

اقرأ أيضاً

225 - Boaz Barak , Kunal Marwaha 2021
We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of classical algorithms. (1) We prove that every (quantum or classical) o ne-local algorithm achieves on $D$-regular graphs of girth $> 5$ a maximum cut of at most $1/2 + C/sqrt{D}$ for $C=1/sqrt{2} approx 0.7071$. This is the first such result showing that one-local algorithms achieve a value bounded away from the true optimum for random graphs, which is $1/2 + P_*/sqrt{D} + o(1/sqrt{D})$ for $P_* approx 0.7632$. (2) We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrt{D} - O(1/sqrt{k})$ for $D$-regular graphs of girth $> 2k+1$, where $C = 2/pi approx 0.6366$. This is an algorithmic version of the existential bound of Lyons and is related to the algorithm of Aizenman, Lebowitz, and Ruelle (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-loc
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break ing phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the {sc Max Cut} of random regular graphs predicted by Zdeborova and Boettcher [Journal of Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten-Stigum bound.
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dy namics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $geq 2k$. For every $d geq 3$ and $k geq 4$, our approximation guarantees are better than those of all other clas sical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree.
An induced forest of a graph G is an acyclic induced subgraph of G. The present paper is devoted to the analysis of a simple randomised algorithm that grows an induced forest in a regular graph. The expected size of the forest it outputs provides a l ower bound on the maximum number of vertices in an induced forest of G. When the girth is large and the degree is at least 4, our bound coincides with the best bound known to hold asymptotically almost surely for random regular graphs. This results in an alternative proof for the random case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا