ﻻ يوجد ملخص باللغة العربية
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
The solution of problems in physics is often facilitated by a change of variables. In this work we present neural transformations to learn symmetries of Hamiltonian mechanical systems. Maintaining the Hamiltonian structure requires novel network arch
The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyz
The Quantum Alternating Operator Ansatz (QAOA) is a promising gate-model meta-heuristic for combinatorial optimization. Applying the algorithm to problems with constraints presents an implementation challenge for near-term quantum resources. This wor
Recently Xue et al. [arXiv:1909.02196] demonstrated numerically that QAOA performance varies as a power law in the amount of noise under certain physical noise models. In this short note, we provide a deeper analysis of the origin of this behavior. I
The Quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. In a typical QAOA setup, a set of quantum circuit parameters is optimiz