ﻻ يوجد ملخص باللغة العربية
We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of classical algorithms. (1) We prove that every (quantum or classical) one-local algorithm achieves on $D$-regular graphs of girth $> 5$ a maximum cut of at most $1/2 + C/sqrt{D}$ for $C=1/sqrt{2} approx 0.7071$. This is the first such result showing that one-local algorithms achieve a value bounded away from the true optimum for random graphs, which is $1/2 + P_*/sqrt{D} + o(1/sqrt{D})$ for $P_* approx 0.7632$. (2) We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrt{D} - O(1/sqrt{k})$ for $D$-regular graphs of girth $> 2k+1$, where $C = 2/pi approx 0.6366$. This is an algorithmic version of the existential bound of Lyons and is related to the algorithm of Aizenman, Lebowitz, and Ruelle (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-loc
The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyz
We present classical and quantum algorithms based on spectral methods for a problem in tensor principal component analysis. The quantum algorithm achieves a quartic speedup while using exponentially smaller space than the fastest classical spectral a
We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_
In this work, we study the limitations of the Quantum Approximate Optimization Algorithm (QAOA) through the lens of statistical physics and show that there exists $epsilon > 0$, such that $epsilonlog(n)$ depth QAOA cannot arbitrarily-well approximate
We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $geq 2k$. For every $d geq 3$ and $k geq 4$, our approximation guarantees are better than those of all other clas