ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainability of vision-based autonomous driving systems: Review and challenges

173   0   0.0 ( 0 )
 نشر من قبل Eloi Zablocki
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This survey reviews explainability methods for vision-based self-driving systems. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from several research fields, namely computer vision, deep learning, autonomous driving, explainable AI (X-AI), this survey tackles several points. First, it discusses definitions, context, and motivation for gaining more interpretability and explainability from self-driving systems. Second, major recent state-of-the-art approaches to develop self-driving systems are quickly presented. Third, methods providing explanations to a black-box self-driving system in a post-hoc fashion are comprehensively organized and detailed. Fourth, approaches from the literature that aim at building more interpretable self-driving systems by design are presented and discussed in detail. Finally, remaining open-challenges and potential future research directions are identified and examined.



قيم البحث

اقرأ أيضاً

In recent years, many deep learning models have been adopted in autonomous driving. At the same time, these models introduce new vulnerabilities that may compromise the safety of autonomous vehicles. Specifically, recent studies have demonstrated tha t adversarial attacks can cause a significant decline in detection precision of deep learning-based 3D object detection models. Although driving safety is the ultimate concern for autonomous driving, there is no comprehensive study on the linkage between the performance of deep learning models and the driving safety of autonomous vehicles under adversarial attacks. In this paper, we investigate the impact of two primary types of adversarial attacks, perturbation attacks and patch attacks, on the driving safety of vision-based autonomous vehicles rather than the detection precision of deep learning models. In particular, we consider two state-of-the-art models in vision-based 3D object detection, Stereo R-CNN and DSGN. To evaluate driving safety, we propose an end-to-end evaluation framework with a set of driving safety performance metrics. By analyzing the results of our extensive evaluation experiments, we find that (1) the attacks impact on the driving safety of autonomous vehicles and the attacks impact on the precision of 3D object detectors are decoupled, and (2) the DSGN model demonstrates stronger robustness to adversarial attacks than the Stereo R-CNN model. In addition, we further investigate the causes behind the two findings with an ablation study. The findings of this paper provide a new perspective to evaluate adversarial attacks and guide the selection of deep learning models in autonomous driving.
With autonomous driving developing in a booming stage, accurate object detection in complex scenarios attract wide attention to ensure the safety of autonomous driving. Millimeter wave (mmWave) radar and vision fusion is a mainstream solution for acc urate obstacle detection. This article presents a detailed survey on mmWave radar and vision fusion based obstacle detection methods. Firstly, we introduce the tasks, evaluation criteria and datasets of object detection for autonomous driving. Then, the process of mmWave radar and vision fusion is divided into three parts: sensor deployment, sensor calibration and sensor fusion, which are reviewed comprehensively. Especially, we classify the fusion methods into data level, decision level and feature level fusion methods. Besides, we introduce the fusion of lidar and vision in autonomous driving in the aspects of obstacle detection, object classification and road segmentation, which is promising in the future. Finally, we summarize this article.
We present an integrated approach for perception and control for an autonomous vehicle and demonstrate this approach in a high-fidelity urban driving simulator. Our approach first builds a model for the environment, then trains a policy exploiting th e learned model to identify the action to take at each time-step. To build a model for the environment, we leverage several deep learning algorithms. To that end, first we train a variational autoencoder to encode the input image into an abstract latent representation. We then utilize a recurrent neural network to predict the latent representation of the next frame and handle temporal information. Finally, we utilize an evolutionary-based reinforcement learning algorithm to train a controller based on these latent representations to identify the action to take. We evaluate our approach in CARLA, a high-fidelity urban driving simulator, and conduct an extensive generalization study. Our results demonstrate that our approach outperforms several previously reported approaches in terms of the percentage of successfully completed episodes for a lane keeping task.
375 - Liangkai Liu , Sidi Lu , Ren Zhong 2020
The recent proliferation of computing technologies (e.g., sensors, computer vision, machine learning, and hardware acceleration), and the broad deployment of communication mechanisms (e.g., DSRC, C-V2X, 5G) have pushed the horizon of autonomous drivi ng, which automates the decision and control of vehicles by leveraging the perception results based on multiple sensors. The key to the success of these autonomous systems is making a reliable decision in real-time fashion. However, accidents and fatalities caused by early deployed autonomous vehicles arise from time to time. The real traffic environment is too complicated for current autonomous driving computing systems to understand and handle. In this paper, we present state-of-the-art computing systems for autonomous driving, including seven performance metrics and nine key technologies, followed by twelve challenges to realize autonomous driving. We hope this paper will gain attention from both the computing and automotive communities and inspire more research in this direction.
Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location an d sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا