ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing Systems for Autonomous Driving: State-of-the-Art and Challenges

376   0   0.0 ( 0 )
 نشر من قبل Liangkai Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent proliferation of computing technologies (e.g., sensors, computer vision, machine learning, and hardware acceleration), and the broad deployment of communication mechanisms (e.g., DSRC, C-V2X, 5G) have pushed the horizon of autonomous driving, which automates the decision and control of vehicles by leveraging the perception results based on multiple sensors. The key to the success of these autonomous systems is making a reliable decision in real-time fashion. However, accidents and fatalities caused by early deployed autonomous vehicles arise from time to time. The real traffic environment is too complicated for current autonomous driving computing systems to understand and handle. In this paper, we present state-of-the-art computing systems for autonomous driving, including seven performance metrics and nine key technologies, followed by twelve challenges to realize autonomous driving. We hope this paper will gain attention from both the computing and automotive communities and inspire more research in this direction.



قيم البحث

اقرأ أيضاً

This survey reviews explainability methods for vision-based self-driving systems. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from sever al research fields, namely computer vision, deep learning, autonomous driving, explainable AI (X-AI), this survey tackles several points. First, it discusses definitions, context, and motivation for gaining more interpretability and explainability from self-driving systems. Second, major recent state-of-the-art approaches to develop self-driving systems are quickly presented. Third, methods providing explanations to a black-box self-driving system in a post-hoc fashion are comprehensively organized and detailed. Fourth, approaches from the literature that aim at building more interpretable self-driving systems by design are presented and discussed in detail. Finally, remaining open-challenges and potential future research directions are identified and examined.
Due to the complex and dynamic character of intersection scenarios, the autonomous driving strategy at intersections has been a difficult problem and a hot point in the research of intelligent transportation systems in recent years. This paper gives a brief summary of state-of-the-art autonomous driving strategies at intersections. Firstly, we enumerate and analyze common types of intersection scenarios, corresponding simulation platforms, as well as related datasets. Secondly, by reviewing previous studies, we have summarized characteristics of existing autonomous driving strategies and classified them into several categories. Finally, we point out problems of the existing autonomous driving strategies and put forward several valuable research outlooks.
Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepminds AlphaGo. It has been successfully deployed in commercial vehicles like Mobileyes path planning system. However, a vast maj ority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.
With recent advances in learning algorithms and hardware development, autonomous cars have shown promise when operating in structured environments under good driving conditions. However, for complex, cluttered and unseen environments with high uncert ainty, autonomous driving systems still frequently demonstrate erroneous or unexpected behaviors, that could lead to catastrophic outcomes. Autonomous vehicles should ideally adapt to driving conditions; while this can be achieved through multiple routes, it would be beneficial as a first step to be able to characterize Driveability in some quantified form. To this end, this paper aims to create a framework for investigating different factors that can impact driveability. Also, one of the main mechanisms to adapt autonomous driving systems to any driving condition is to be able to learn and generalize from representative scenarios. The machine learning algorithms that currently do so learn predominantly in a supervised manner and consequently need sufficient data for robust and efficient learning. Therefore, we also perform a comparative overview of 45 public driving datasets that enable learning and publish this dataset index at https://sites.google.com/view/driveability-survey-datasets. Specifically, we categorize the datasets according to use cases, and highlight the datasets that capture complicated and hazardous driving conditions which can be better used for training robust driving models. Furthermore, by discussions of what driving scenarios are not covered by existing public datasets and what driveability factors need more investigation and data acquisition, this paper aims to encourage both targeted dataset collection and the proposal of novel driveability metrics that enhance the robustness of autonomous cars in adverse environments.
Autonomous vehicles rely on their perception systems to acquire information about their immediate surroundings. It is necessary to detect the presence of other vehicles, pedestrians and other relevant entities. Safety concerns and the need for accura te estimations have led to the introduction of Light Detection and Ranging (LiDAR) systems in complement to the camera or radar-based perception systems. This article presents a review of state-of-the-art automotive LiDAR technologies and the perception algorithms used with those technologies. LiDAR systems are introduced first by analyzing the main components, from laser transmitter to its beam scanning mechanism. Advantages/disadvantages and the current status of various solutions are introduced and compared. Then, the specific perception pipeline for LiDAR data processing, from an autonomous vehicle perspective is detailed. The model-driven approaches and the emerging deep learning solutions are reviewed. Finally, we provide an overview of the limitations, challenges and trends for automotive LiDARs and perception systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا