ﻻ يوجد ملخص باللغة العربية
Regular black holes with nonsingular cores have been considered in several approaches to quantum gravity, and as agnostic frameworks to address the singularity problem and Hawkings information paradox. While in a recent work we argued that the inner core is destabilized by linear perturbations, opposite claims were raised that regular black holes have in fact stable cores. To reconcile these arguments, we discuss a generalization of the geometrical framework, originally applied to Reissner--Nordtsrom black holes by Ori, and show that regular black holes have an exponentially growing Misner--Sharp mass at the inner horizon. This result can be taken as an indication that stable nonsingular black hole spacetimes are not the definitive endpoint of a quantum gravity regularization mechanism, and that nonperturbative backreaction effects must be taken into account in order to provide a consistent description of the quantum-gravitational endpoint of gravitational stellar collapse.
A common argument suggests that non-singular geometries may not describe black holes observed in nature since they are unstable due to a mass-inflation effect. We analyze the dynamics associated with spherically symmetric, regular black holes taking
Standard models of regular black holes typically have asymptotically de Sitter regions at their cores. Herein we shall consider novel hollow regular black holes, those with asymptotically Minkowski cores. The reason for doing so is twofold: First, th
Kerr-Schild solutions of the Einstein-Maxwell field equations, containing semi-infinite axial singular lines, are investigated. It is shown that axial singularities break up the black hole, forming holes in the horizon. As a result, a tube-like reg
Various spacetime candidates for traversable wormholes, regular black holes, and `black-bounces are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematica
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an extern