ﻻ يوجد ملخص باللغة العربية
Standard models of regular black holes typically have asymptotically de Sitter regions at their cores. Herein we shall consider novel hollow regular black holes, those with asymptotically Minkowski cores. The reason for doing so is twofold: First, these models greatly simplify the physics in the deep core, and second, one can trade off rather messy cubic and quartic polynomial equations for somewhat more elegant special functions such as exponentials and the increasingly important Lambert $W$ function. While these hollow regular black holes share many features with the Bardeen/Hayward/Frolov regular black holes there are also significant differences.
A common argument suggests that non-singular geometries may not describe black holes observed in nature since they are unstable due to a mass-inflation effect. We analyze the dynamics associated with spherically symmetric, regular black holes taking
We construct a sort of regular black holes with a sub-Planckian Kretschmann scalar curvature. The metric of this sort of regular black holes is characterized by an exponentially suppressing gravity potential as well as an asymptotically Minkowski cor
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the sca
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an extern