ﻻ يوجد ملخص باللغة العربية
The formation of $alpha$ particle on nuclear surface has been a fundamental problem since the early age of nuclear physics. It strongly affects the $alpha$ decay lifetime of heavy and superheavy elements, level scheme of light nuclei, and the synthesis of the elements in stars. However, the $alpha$-particle formation in medium-mass nuclei has been poorly known despite its importance. Here, based on the $^{48}{rm Ti}(p,palpha)^{44}{rm Ca}$ reaction analysis, we report that the $alpha$-particle formation in a medium-mass nucleus $^{48}{rm Ti}$ is much stronger than that expected from a mean-field approximation, and the estimated average distance between $alpha$ particle and the residue is as large as 4.5 fm. This new result poses a challenge of describing four nucleon correlations by microscopic nuclear models.
The proton-induced $alpha$ knockout reaction has been utilized for decades to investigate the $alpha$ cluster states of nuclei, of the ground state in particular. However, even in recent years, it is reported that the deduced $alpha$ spectroscopic fa
{bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{rm skin}^{208}=0.25$fm from the central values of $sigma_{rm R}$ of p+$^{208}$Pb scattering in $E_{rm in}=40-81$MeV. Th
We present calculations of the invariant mass spectra of the $Lambda$p system for the exclusive $p p to K^+ Lambda p$ reaction with the aim of studying the final state interaction between the $Lambda$-hyperon and the proton. The reaction is described
The $alpha$ particle preformation in the even-even nuclei from $^{108}$Te to $^{294}$118 and the penetration probability have been studied. The isotopes from Pb to U have been firstly investigated since the experimental data allow us to extract the m
The $^{120}$Sn($p$,$palpha$)$^{116}$Cd reaction at 392 MeV is investigated with the distorted wave impulse approximation (DWIA) framework. We show that this reaction is very peripheral mainly because of the strong absorption of $alpha$ by the reactio