ﻻ يوجد ملخص باللغة العربية
{bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{rm skin}^{208}=0.25$fm from the central values of $sigma_{rm R}$ of p+$^{208}$Pb scattering in $E_{rm in}=40-81$MeV. The high-resolution $E1$ polarizability experiment ($E1$pE) yields $r_{rm skin}^{48}(E1{rm pE}) =0.14-0.20$fm. The data on $sigma_{rm R}$ are available as a function of $E_{rm in}$ for $p$+$^{48}$Ca scattering. {bf Aim:} Our aim is to determine $r_{rm skin}^{48}$ from the central values of $sigma_{rm R}$ for $p$+$^{48}$Ca scattering by using the folding model. {bf Results:} As for $^{48}$Ca, we determine $r_n(E1{rm pE})=3.56$fm from the central value 0.17fm of $r_{rm skin}^{48}(E1{rm pE})$ and $r_p({rm EXP})=3.385$fm of electron scattering, and evaluate $r_m(E1{rm pE})=3.485$fm from the $r_n(E1{rm pE})$ and the $r_p({rm EXP})$ of electron scattering. The folding model with GHFB+AMP densities reproduces $sigma_{rm R}$ in $23 leq E_{rm in} leq 25.3$ MeV in one-$sigma$ level, but slightly overestimates the central values of $sigma_{rm R}$ there. In $23 leq E_{rm in} leq 25.3$MeV, the small deviation allows us to scale the GHFB+AMP densities to the central values of $r_p({rm EXP})$ and $r_n(E1{rm pE})$. The $sigma_{rm R}(E1{rm pE})$ obtained with the scaled densities almost reproduce the central values of $sigma_{rm R}$ when $E_{rm in}=23-25.3$MeV, so that the $sigma_{rm R}({rm GHFB+AMP})$ and the $sigma_{rm R}(E1{rm pE})$ are in 1-$sigma$ of $sigma_{rm R}$ there. In $E_{rm in}=23-25.3$MeV, we determine the $r_{m}({rm EXP})$ from the central values of $sigma_{rm R}$ and take the average for the $r_{m}({rm EXP})$. The averaged value is $r_{m}({rm EXP})=3.471$fm. Eventually, we obtain $r_{rm skin}^{48}({rm EXP})=0.146$fm from $r_{m}({rm EXP})=3.471$fm and $r_p({rm EXP})=3.385$fm.
For $^{48}$Ca, we determined $r_{m}$fm and $r_{rm skin}$fm from the central values of $sigma_{rm R}({rm EXP})$ of p+$^{48}$Ca scattering, using the chiral (Kyushu) $g$-matrix folding model with the GHFB+AMP densities. For $^{40}$Ca, Zenihiro {it et a
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the
In our previous paper, we predicted $sigma_{rm R}$ for $^{40-60,62,64}$Ca+ $^{12}$C scattering at 280 MeV/u, using the Kyushu (chiral) $g$-matrix folding model with the densities calculated with D1S-GHFB with and without the AMP. Interaction cross se
[Background]: In our previous paper, we predicted $r_{rm skin}$, $r_{rm p}$, $r_{rm n}$, $r_{rm m}$ for $^{40-60,62,64}$Ca after determining the neutron dripline, using the Gogny-D1S HFB with and without the angular momentum projection (AMP). We foun
In the present work, we use a finite range effective interaction to calculate the neutron skin thickness in $^{48}$Ca and correlate these quantities with the parameters of nuclear symmetry energy. Available experimental data on the neutron skin thick