ﻻ يوجد ملخص باللغة العربية
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway towards the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems in situ connected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO3 layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO3, for systematic modulation of interfacial chemical potential.With the dramatic increase of electron accumulation at the LaTiO3-SrTiO3 surface, providing a substantial surge of work function mismatch across the FeSe-oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicates the existence of an intrinsically anchored magic doping within the monolayer FeSe systems.
The discovery of high-temperature (Tc) superconductivity in monolayer FeSe on SrTiO3 raised a fundamental question whether high Tc is commonly realized in monolayer iron-based superconductors. Tetragonal FeS is a key material to resolve this issue be
Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with $s$-wave superconductivity. Here, we develop a theory for the superconductivity based on couplin
We formulate the superfluid weight in unconventional superconductors with $bm k$-dependent Cooper pair potentials based on the geometric properties of Bloch electrons. We apply the formula to a model of the monolayer FeSe obtained by the first-princi
Synthesis of monolayer FeSe on SrTiO3, with greatly enhanced superconductivity compared to bulk FeSe, remains difficult. Lengthy annealing within a certain temperature window is always required to achieve superconducting samples as reported by differ
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accord