ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning stoichiometry and its impact on superconductivity of monolayer and multilayer FeSe on SrTiO3

86   0   0.0 ( 0 )
 نشر من قبل Chong Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthesis of monolayer FeSe on SrTiO3, with greatly enhanced superconductivity compared to bulk FeSe, remains difficult. Lengthy annealing within a certain temperature window is always required to achieve superconducting samples as reported by different groups around the world, but the mechanism of annealing in inducing superconductivity has not been elucidated. We grow FeSe films on SrTiO3 by molecular beam epitaxy and adjust the stoichiometry by depositing additional small amounts of Fe atoms. The monolayer films become superconducting after the Fe deposition without any annealing, and show similar superconducting transition temperatures as those of the annealed films in transport measurements. We also demonstrate on the 5-unit-cell films that the FeSe multilayer can be reversibly tuned between the non-superconducting $sqrt{5} times sqrt{5}$ phase with Fe-vacancies and superconducting $1 times 1$ phase. Our results reveal that the traditional anneal process in essence removes Fe vacancies and the additional Fe deposition serves as a more efficient way to achieve superconductivity. This work highlights the significance of stoichiometry in the superconductivity of FeSe thin films and provides an easy path for superconducting samples.



قيم البحث

اقرأ أيضاً

Cryogenic scanning tunneling microscopy is employed to investigate the stoichiometry and defects of epitaxial FeSe thin films on SrTiO3(001) substrates under various post-growth annealing conditions. Low-temperature annealing with an excess supply of Se leads to formation of Fe vacancies and superstructures, accompanied by a superconductivity (metal)-to-insulator transition in FeSe films. By contrast, high-temperature annealing could eliminate the Fe vacancies and superstructures, and thus recover the high-temperature superconducting phase of monolayer FeSe films. We also observe multilayer FeSe during low-temperature annealing, which is revealed to link with Fe vacancy formation and adatom migration. Our results document very special roles of film stoichiometry and help unravel several controversies in the properties of monolayer FeSe films.
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway towards the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems in situ c onnected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO3 layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO3, for systematic modulation of interfacial chemical potential.With the dramatic increase of electron accumulation at the LaTiO3-SrTiO3 surface, providing a substantial surge of work function mismatch across the FeSe-oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicates the existence of an intrinsically anchored magic doping within the monolayer FeSe systems.
The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thi n film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high quality nickelate films using molecular beam epitaxy (MBE). We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction (RHEED) indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction (XRD) data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in superconducting nickelate family.
The discovery of high-temperature (Tc) superconductivity in monolayer FeSe on SrTiO3 raised a fundamental question whether high Tc is commonly realized in monolayer iron-based superconductors. Tetragonal FeS is a key material to resolve this issue be cause bulk FeS is a superconductor with Tc comparable to that of isostructural FeSe. However, difficulty in synthesizing tetragonal monolayer FeS due to its metastable nature has hindered further investigations. Here we report elucidation of band structure of monolayer FeS on SrTiO3, enabled by a unique combination of in-situ topotactic reaction and molecular-beam epitaxy. Our angle-resolved photoemission spectroscopy on FeS and FeSe revealed marked similarities in the electronic structure, such as heavy electron doping and interfacial electron-phonon coupling, both of which have been regarded as possible sources of high Tc in FeSe. However, surprisingly, high-Tc superconductivity is absent in monolayer FeS. This is linked to the weak superconducting pairing in electron-doped multilayer FeS in which the interfacial effects are absent. Our results strongly suggest that the cross-interface electron-phonon coupling enhances Tc only when it cooperates with the pairing interaction inherent to the superconducting layer. This finding provides a key insight to explore new heterointerface high-Tc superconductors.
81 - Chong Liu , Jiahao Mao , Hao Ding 2017
Determination of the pairing symmetry in monolayer FeSe films on SrTiO3 is a requisite for understanding the high superconducting transition temperature in this system, which has attracted intense theoretical and experimental studies but remains cont roversial. Here, by introducing several types of point defects in FeSe monolayer films, we conduct a systematic investigation on the impurity-induced electronic states by spatially resolved scanning tunneling spectroscopy. Ranging from surface adsorption, chemical substitution to intrinsic structural modification, these defects generate a variety of scattering strength, which renders new insights on the pairing symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا