ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in monolayer FeSe enhanced by quantum geometry

89   0   0.0 ( 0 )
 نشر من قبل Taisei Kitamura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate the superfluid weight in unconventional superconductors with $bm k$-dependent Cooper pair potentials based on the geometric properties of Bloch electrons. We apply the formula to a model of the monolayer FeSe obtained by the first-principles calculation. Our numerical calculations point to a significant enhancement of the Berezinskii-Kosterlitz-Thouless transition temperature due to the geometric contribution to the superfluid weight, which is not included in the Fermi liquid theory. The $bm k$-dependence of the gap function also stabilizes the superconducting state. Our results reveal that the geometric properties of Bloch electrons play an essential role in superconducting materials and pave the way for clarifying hidden aspects of superconductivity from the viewpoint of quantum geometry.

قيم البحث

اقرأ أيضاً

Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with $s$-wave superconductivity. Here, we develop a theory for the superconductivity based on couplin g to fluctuations of checkerboard magnetic order (which has the same translation symmetry as the lattice). The electronic states are described by a symmetry based ${bf k}cdot {bf p}$-like theory and naturally account for the states observed by angle resolved photoemission spectroscopy. We show that a prediction of this theory is that the resultant superconducting state is a fully gapped, nodeless, $d$-wave state. This state, which would usually have nodes, stays nodeless because, as seen experimentally, the relevant spin-orbit coupling term has an energy scale smaller than the superconducting gap.
The discovery of high-temperature (Tc) superconductivity in monolayer FeSe on SrTiO3 raised a fundamental question whether high Tc is commonly realized in monolayer iron-based superconductors. Tetragonal FeS is a key material to resolve this issue be cause bulk FeS is a superconductor with Tc comparable to that of isostructural FeSe. However, difficulty in synthesizing tetragonal monolayer FeS due to its metastable nature has hindered further investigations. Here we report elucidation of band structure of monolayer FeS on SrTiO3, enabled by a unique combination of in-situ topotactic reaction and molecular-beam epitaxy. Our angle-resolved photoemission spectroscopy on FeS and FeSe revealed marked similarities in the electronic structure, such as heavy electron doping and interfacial electron-phonon coupling, both of which have been regarded as possible sources of high Tc in FeSe. However, surprisingly, high-Tc superconductivity is absent in monolayer FeS. This is linked to the weak superconducting pairing in electron-doped multilayer FeS in which the interfacial effects are absent. Our results strongly suggest that the cross-interface electron-phonon coupling enhances Tc only when it cooperates with the pairing interaction inherent to the superconducting layer. This finding provides a key insight to explore new heterointerface high-Tc superconductors.
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway towards the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems in situ c onnected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO3 layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO3, for systematic modulation of interfacial chemical potential.With the dramatic increase of electron accumulation at the LaTiO3-SrTiO3 surface, providing a substantial surge of work function mismatch across the FeSe-oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicates the existence of an intrinsically anchored magic doping within the monolayer FeSe systems.
The observation of substantially enhanced superconductivity of single-layer FeSe films on SrTiO3 has stimulated intensive research interest. At present, conclusive experimental data on the corresponding electron-boson interaction is still missing. He re we use inelastic electron scattering spectroscopy and angle resolved photoemission spectroscopy to show that the electrons in these systems are dressed by the strongly polarized lattice distortions of the SrTiO3, and the indispensable non-adiabatic nature of such a coupling leads to the formation of dynamic interfacial polarons. Furthermore, the collective motion of the polarons results in a polaronic plasmon mode, which is unambiguously correlated with the surface phonons of SrTiO3 in the presence of the FeSe films. A microscopic model is developed showing that the interfacial polaron-polaron interaction leads to the superconductivity enhancement.
185 - P. Zhang , X.-L. Peng , T. Qian 2015
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accord ingly, suppression of orthorhombicity below the superconducting transition temperature (Tc) is found in underdoped compounds. Epitaxial film growth on selected substrates allows the design of crystal specific lattice distortions. Here we show that despite the breakdown of the C4 symmetry induced by a 5% difference in the lattice parameters, monolayers of FeSe grown by molecular beam epitaxy (MBE) on the (110) surface of SrTiO3 (STO) substrates [FeSe/STO(110)] exhibit a large nearly isotropic superconducting (SC) gap of 16 meV closing around 60 K. Our results on this new interfacial material, similar to those obtained previously on FeSe/STO(001), contradict the common belief that the C4 symmetry is essential for reaching high Tcs in Fe-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا