ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Effective Automated Content Analysis via Crowdsourcing

72   0   0.0 ( 0 )
 نشر من قبل Chau-Wai Wong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many computer scientists use the aggregated answers of online workers to represent ground truth. Prior work has shown that aggregation methods such as majority voting are effective for measuring relatively objective features. For subjective features such as semantic connotation, online workers, known for optimizing their hourly earnings, tend to deteriorate in the quality of their responses as they work longer. In this paper, we aim to address this issue by proposing a quality-aware semantic data annotation system. We observe that with timely feedback on workers performance quantified by quality scores, better informed online workers can maintain the quality of their labeling throughout an extended period of time. We validate the effectiveness of the proposed annotation system through i) evaluating performance based on an expert-labeled dataset, and ii) demonstrating machine learning tasks that can lead to consistent learning behavior with 70%-80% accuracy. Our results suggest that with our system, researchers can collect high-quality answers of subjective semantic features at a large scale.



قيم البحث

اقرأ أيضاً

Increased data gathering capacity, together with the spread of data analytics techniques, has prompted an unprecedented concentration of information related to the individuals preferences in the hands of a few gatekeepers. In the present paper, we sh ow how platforms performances still appear astonishing in relation to some unexplored data and networks properties, capable to enhance the platforms capacity to implement steering practices by means of an increased ability to estimate individuals preferences. To this end, we rely on network science whose analytical tools allow data representations capable of highlighting relationships between subjects and/or items, extracting a great amount of information. We therefore propose a measure called Network Information Patrimony, considering the amount of information available within the system and we look into how platforms could exploit data stemming from connected profiles within a network, with a view to obtaining competitive advantages. Our measure takes into account the quality of the connections among nodes as the one of a hypothetical user in relation to its neighbourhood, detecting how users with a good neighbourhood -- hence of a superior connections set -- obtain better information. We tested our measures on Amazons instances, obtaining evidence which confirm the relevance of information extracted from nodes neighbourhood in order to steer targeted users.
In the era of big data, the advancement, improvement, and application of algorithms in academic research have played an important role in promoting the development of different disciplines. Academic papers in various disciplines, especially computer science, contain a large number of algorithms. Identifying the algorithms from the full-text content of papers can determine popular or classical algorithms in a specific field and help scholars gain a comprehensive understanding of the algorithms and even the field. To this end, this article takes the field of natural language processing (NLP) as an example and identifies algorithms from academic papers in the field. A dictionary of algorithms is constructed by manually annotating the contents of papers, and sentences containing algorithms in the dictionary are extracted through dictionary-based matching. The number of articles mentioning an algorithm is used as an indicator to analyze the influence of that algorithm. Our results reveal the algorithm with the highest influence in NLP papers and show that classification algorithms represent the largest proportion among the high-impact algorithms. In addition, the evolution of the influence of algorithms reflects the changes in research tasks and topics in the field, and the changes in the influence of different algorithms show different trends. As a preliminary exploration, this paper conducts an analysis of the impact of algorithms mentioned in the academic text, and the results can be used as training data for the automatic extraction of large-scale algorithms in the future. The methodology in this paper is domain-independent and can be applied to other domains.
Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature. Although an increasing number of biomedical QA datasets has been recently made avai lable, those resources are still rather limited and expensive to produce. Transfer learning via pre-trained language models (LMs) has been shown as a promising approach to leverage existing general-purpose knowledge. However, finetuning these large models can be costly and time consuming, often yielding limited benefits when adapting to specific themes of specialised domains, such as the COVID-19 literature. To bootstrap further their domain adaptation, we propose a simple yet unexplored approach, which we call biomedical entity-aware masking (BEM). We encourage masked language models to learn entity-centric knowledge based on the pivotal entities characterizing the domain at hand, and employ those entities to drive the LM fine-tuning. The resulting strategy is a downstream process applicable to a wide variety of masked LMs, not requiring additional memory or components in the neural architectures. Experimental results show performance on par with state-of-the-art models on several biomedical QA datasets.
Mining a set of meaningful topics organized into a hierarchy is intuitively appealing since topic correlations are ubiquitous in massive text corpora. To account for potential hierarchical topic structures, hierarchical topic models generalize flat t opic models by incorporating latent topic hierarchies into their generative modeling process. However, due to their purely unsupervised nature, the learned topic hierarchy often deviates from users particular needs or interests. To guide the hierarchical topic discovery process with minimal user supervision, we propose a new task, Hierarchical Topic Mining, which takes a category tree described by category names only, and aims to mine a set of representative terms for each category from a text corpus to help a user comprehend his/her interested topics. We develop a novel joint tree and text embedding method along with a principled optimization procedure that allows simultaneous modeling of the category tree structure and the corpus generative process in the spherical space for effective category-representative term discovery. Our comprehensive experiments show that our model, named JoSH, mines a high-quality set of hierarchical topics with high efficiency and benefits weakly-supervised hierarchical text classification tasks.
An effective method for cross-lingual transfer is to fine-tune a bilingual or multilingual model on a supervised dataset in one language and evaluating it on another language in a zero-shot manner. Translating examples at training time or inference t ime are also viable alternatives. However, there are costs associated with these methods that are rarely addressed in the literature. In this work, we analyze cross-lingual methods in terms of their effectiveness (e.g., accuracy), development and deployment costs, as well as their latencies at inference time. Our experiments on three tasks indicate that the best cross-lingual method is highly task-dependent. Finally, by combining zero-shot and translation methods, we achieve the state-of-the-art in two of the three datasets used in this work. Based on these results, we question the need for manually labeled training data in a target language. Code, models and translated datasets are available at https://github.com/unicamp-dl/cross-lingual-analysis

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا