ﻻ يوجد ملخص باللغة العربية
This paper presents a computational evolutionary game model to study and understand fraud dynamics in the consumption tax system. Players are cooperators if they correctly declare their value added tax (VAT), and are defectors otherwise. Each players payoff is influenced by the amount evaded and the subjective probability of being inspected by tax authorities. Since transactions between companies must be declared by both the buyer and seller, a strategy adopted by one influences the others payoff. We study the model with a well-mixed population and different scale-free networks. Model parameters were calibrated using real-world data of VAT declarations by businesses registered in the Canary Islands region of Spain. We analyzed several scenarios of audit probabilities for high and low transactions and their prevalence in the population, as well as social rewards and penalties to find the most efficient policy to increase the proportion of cooperators. Two major insights were found. First, increasing the subjective audit probability for low transactions is more efficient than increasing this probability for high transactions. Second, favoring social rewards for cooperators or alternative penalties for defectors can be effective policies, but their success depends on the distribution of the audit probability for low and high transactions.
In January 2019, DeepMind revealed AlphaStar to the world-the first artificial intelligence (AI) system to beat a professional player at the game of StarCraft II-representing a milestone in the progress of AI. AlphaStar draws on many areas of AI rese
This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system - a cascade-based operation scenario. For this, we propose a new mathematical modelling in which the goal is to maximize the total energy production of
Multivariate time series (MTS) prediction plays a key role in many fields such as finance, energy and transport, where each individual time series corresponds to the data collected from a certain data source, so-called channel. A typical pipeline of
The theory of evolutionary computation for discrete search spaces has made significant progress in the last ten years. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime
Not all generate-and-test search algorithms are created equal. Bayesian Optimization (BO) invests a lot of computation time to generate the candidate solution that best balances the predicted value and the uncertainty given all previous data, taking