ترغب بنشر مسار تعليمي؟ اضغط هنا

An Efficient Multi-objective Evolutionary Approach for Solving the Operation of Multi-Reservoir System Scheduling in Hydro-Power Plants

337   0   0.0 ( 0 )
 نشر من قبل Carolina Gil Marcelino
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system - a cascade-based operation scenario. For this, we propose a new mathematical modelling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.



قيم البحث

اقرأ أيضاً

Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal mul ti-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k in [4..frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.
Recently, more and more works have proposed to drive evolutionary algorithms using machine learning models.Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models.Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality.To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs).At each generation of the proposed algorithm, the parent solutions are first classified into emph{real} and emph{fake} samples to train the GANs; then the offspring solutions are sampled by the trained GANs.Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data.The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables.Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
A preference based multi-objective evolutionary algorithm is proposed for generating solutions in an automatically detected knee point region. It is named Automatic Preference based DI-MOEA (AP-DI-MOEA) where DI-MOEA stands for Diversity-Indicator ba sed Multi-Objective Evolutionary Algorithm). AP-DI-MOEA has two main characteristics: firstly, it generates the preference region automatically during the optimization; secondly, it concentrates the solution set in this preference region. Moreover, the real-world vehicle fleet maintenance scheduling optimization (VFMSO) problem is formulated, and a customized multi-objective evolutionary algorithm (MOEA) is proposed to optimize maintenance schedules of vehicle fleets based on the predicted failure distribution of the components of cars. Furthermore, the customized MOEA for VFMSO is combined with AP-DI-MOEA to find maintenance schedules in the automatically generated preference region. Experimental results on multi-objective benchmark problems and our three-objective real-world application problems show that the newly proposed algorithm can generate the preference region accurately and that it can obtain better solutions in the preference region. Especially, in many cases, under the same budget, the Pareto optimal solutions obtained by AP-DI-MOEA dominate solutions obtained by MOEAs that pursue the entire Pareto front.
507 - Haokai Hong , Kai Ye , Min Jiang 2021
The main feature of large-scale multi-objective optimization problems (LSMOP) is to optimize multiple conflicting objectives while considering thousands of decision variables at the same time. An efficient LSMOP algorithm should have the ability to e scape the local optimal solution from the huge search space and find the global optimal. Most of the current researches focus on how to deal with decision variables. However, due to the large number of decision variables, it is easy to lead to high computational cost. Maintaining the diversity of the population is one of the effective ways to improve search efficiency. In this paper, we propose a probabilistic prediction model based on trend prediction model and generating-filtering strategy, called LT-PPM, to tackle the LSMOP. The proposed method enhances the diversity of the population through importance sampling. At the same time, due to the adoption of an individual-based evolution mechanism, the computational cost of the proposed method is independent of the number of decision variables, thus avoiding the problem of exponential growth of the search space. We compared the proposed algorithm with several state-of-the-art algorithms for different benchmark functions. The experimental results and complexity analysis have demonstrated that the proposed algorithm has significant improvement in terms of its performance and computational efficiency in large-scale multi-objective optimization.
264 - Jinjin Xu , Yaochu Jin , Wenli Du 2021
Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا