ترغب بنشر مسار تعليمي؟ اضغط هنا

Far and extreme ultraviolet radiation fields and consequent disc destruction in star-forming regions

89   0   0.0 ( 0 )
 نشر من قبل Richard Parker
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first stages of planet formation usually occur when the host star is still in a (relatively) dense star-forming region, where the effects of the external environment may be important for understanding the outcome of the planet formation process. In particular, star-forming regions that contain massive stars have strong far ultraviolet (FUV) and extreme ultraviolet (EUV) radiation fields, which can induce mass-loss from protoplanetary discs due to photoevaporation. In this paper we present a parameter-space study of the expected FUV and EUV fields in N-body simulations of star-forming regions with a range of initial conditions. We then use recently published models to determine the mass-loss due to photoevaporation from protoplanetary discs. In particular, we focus on the effects of changing the initial degree of spatial structure and initial virial ratio in the star-forming regions, as well as the initial stellar density. We find that the FUV fields in star-forming regions are much higher than in the interstellar medium, even when the regions have stellar densities as low as in the Galactic field, due to the presence of intermediate-mass, and massive, stars (>5Msun). These strong radiation fields lead to the destruction of the gas component in protoplanetary discs within 1 Myr, implying that gas giant planets must either form extremely rapidly (<1 Myr), or that they exclusively form in star-forming regions like Taurus, which contain no intermediate-mass or massive stars. The latter scenario is in direct tension with meteoritic evidence from the Solar system that suggests the Sun and its protoplanetary disc was born in close proximity to massive stars.

قيم البحث

اقرأ أيضاً

127 - Kate Pattle , Laura Fissel 2019
Observations of star-forming regions by the current and upcoming generation of submillimeter polarimeters will shed new light on the evolution of magnetic fields over the cloud-to-core size scales involved in the early stages of the star formation pr ocess. Recent wide-area and high-sensitivity polarization observations have drawn attention to the challenges of modeling magnetic field structure of star forming regions, due to variations in dust polarization properties in the interstellar medium. However, these observations also for the first time provide sufficient information to begin to break the degeneracy between polarization efficiency variations and depolarization due to magnetic field sub-beam structure, and thus to accurately infer magnetic field properties in the star-forming interstellar medium. In this article we discuss submillimeter and far-infrared polarization observations of star-forming regions made with single-dish instruments. We summarize past, present and forthcoming single-dish instrumentation, and discuss techniques which have been developed or proposed to interpret polarization observations, both in order to infer the morphology and strength of the magnetic field, and in order to determine the environments in which dust polarization observations reliably trace the magnetic field. We review recent polarimetric observations of molecular clouds, filaments, and starless and protostellar cores, and discuss how the application of the full range of modern analysis techniques to recent observations will advance our understanding of the role played by the magnetic field in the early stages of star formation.
120 - Richard J. Parker 2017
The presence of an unseen `Planet 9 on the outskirts of the Solar system has been invoked to explain the unexpected clustering of the orbits of several Edgeworth--Kuiper Belt Objects. We use $N$-body simulations to investigate the probability that Pl anet 9 was a free-floating planet (FFLOP) that was captured by the Sun in its birth star-formation environment. We find that only 1 - 6 per cent of FFLOPs are ensnared by stars, even with the most optimal initial conditions for capture in star-forming regions (one FFLOP per star, and highly correlated stellar velocities to facilitate capture). Depending on the initial conditions of the star-forming regions, only 5 - 10 of 10000 planets are captured onto orbits that lie within the constraints for Planet 9. When we apply an additional environmental constraint for Solar system formation - namely the injection of short-lived radioisotopes into the Suns protoplanetary disc from supernovae - we find that the probability for the capture of Planet 9 to be almost zero.
Recent observations of the HDO/H$_2$O ratio toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H ratios than clustered counterparts. Establishing which physical and chemical proce sses create this differentiation can provide insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and the results are compared with interferometric observations of H$_2$O, HDO, and D$_2$O in hot corinos toward low-mass protostars. Results: The physicochemical model reproduces the observed HDO/H$_2$O and D$_2$O/HDO ratios in hot corinos, but shows no correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H ratios in hot corinos requires a prestellar phase duration $tsim$1-3 Myr and temperatures in the range $T sim$ 10-20 K prior to collapse. This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.
72 - E. Sanchis , L. Testi , A. Natta 2021
We perform a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds, in order to find indications of dust evolution and possible correlations with other properties. We increase up to 42 the number of disks of the region with measured CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$) from observations with the Atacama Large Millimeter/submillimeter Array (ALMA). The sizes are obtained from modeling the ${^{12}}$CO $J = 2-1$ line emission and continuum emission at $sim 0.89$ mm with an empirical function (Nuker profile or Gaussian function). The CO emission is more extended than the dust continuum, with a $R_{68%}^{mathrm{CO}}$/$R_{68%}^{mathrm{dust}}$ median value of 2.5, for the entire population and for a sub-sample with high completeness. 6 disks, around $15%$ of the Lupus disk population have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties in terms of stellar mass ($M_{star}$), disk mass ($M_{mathrm{disk}}$), CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$), and mass accretion. We search for correlations between the size ratio and $M_{star}$, $M_{mathrm{disk}}$, $R_{mathrm{CO}}$ and $R_{mathrm{dust}}$: only a weak monotonic anti-correlation with the $R_{mathrm{dust}}$ is found. The lack of strong correlations is remarkable and suggests that the bulk of the population may be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum may play a role in the inferred size ratios. Lastly, the CO emission for the majority of the disks is consistent with optically thick emission and an average CO temperature of around 30 K.
The far-IR range is a critical wavelength range to characterize the physical and chemical processes that transform the interstellar material into stars and planets. Objects in the earliest phases of stellar and planet evolution release most of their energy at these long wavelengths. In this contribution we briefly summarise some of the most relevant scientific advances achieved by the Herschel Space Observatory in the field. We also anticipate those that will be made possible by the large increase in sensitivity of SPICA cooled telescope. It is concluded that only through sensitive far-IR observations much beyond Herschel capabilities we will be able to constrain the mass, the energy budget and the water content of hundreds of protostars and planet-forming disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا