ﻻ يوجد ملخص باللغة العربية
The far-IR range is a critical wavelength range to characterize the physical and chemical processes that transform the interstellar material into stars and planets. Objects in the earliest phases of stellar and planet evolution release most of their energy at these long wavelengths. In this contribution we briefly summarise some of the most relevant scientific advances achieved by the Herschel Space Observatory in the field. We also anticipate those that will be made possible by the large increase in sensitivity of SPICA cooled telescope. It is concluded that only through sensitive far-IR observations much beyond Herschel capabilities we will be able to constrain the mass, the energy budget and the water content of hundreds of protostars and planet-forming disks.
With the aim of investigating the presence of molecular and dust clumps linked to two star forming regions identified in the expanding molecular envelope of the stellar wind bubble RCW78, we analyzed the distribution of the molecular gas and cold dus
The fine-structure line of [OI] at 63micron is an important diagnostic tool in different fields of astrophysics. However, our knowledge of this line relies on observations with low spectral resolution, and the real contribution of each component (PDR
Observations of star-forming regions by the current and upcoming generation of submillimeter polarimeters will shed new light on the evolution of magnetic fields over the cloud-to-core size scales involved in the early stages of the star formation pr
We compile and analyze ~200 trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars. These measurements strongly suggest that the Milky Way is a four-arm spiral. Fitting log-periodic spirals to the l
We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda_MSR technique, and