ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling chemistry during star formation: Water deuteration in dynamic star-forming regions

58   0   0.0 ( 0 )
 نشر من قبل Sigurd Sigersen Jensen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of the HDO/H$_2$O ratio toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H ratios than clustered counterparts. Establishing which physical and chemical processes create this differentiation can provide insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and the results are compared with interferometric observations of H$_2$O, HDO, and D$_2$O in hot corinos toward low-mass protostars. Results: The physicochemical model reproduces the observed HDO/H$_2$O and D$_2$O/HDO ratios in hot corinos, but shows no correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H ratios in hot corinos requires a prestellar phase duration $tsim$1-3 Myr and temperatures in the range $T sim$ 10-20 K prior to collapse. This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.



قيم البحث

اقرأ أيضاً

(abridged) Data and results from the WISH key program are summarized, designed to provide a legacy data set to address its physics and chemistry. WISH targeted ~80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mas s protostars and from pre-stellar cores to protoplanetary disks. Lines of H2O, HDO, OH, CO and [O I] were observed with the HIFI and PACS instruments, complemented by molecules that probe UV, X-ray or grain chemistry. Most of the far-infrared water emission from protostars is found to be compact, originating from warm outflowing and shocked gas at high density and temperature in at least two physical components. This gas is not probed by low-J CO lines, only by J>14. Water is a significant, but not dominant, coolant. Its abundance is universally low, of order H2O/H2=2E-6, pointing to shock and outflow cavity models that include UV radiation at 100-1000 times the ISRF. In cold quiescent pre-stellar cores and envelopes, the water abundance structure is accurately probed through velocity-resolved line profiles, confirming basic chemistry networks. The gaseous HDO/H2O ratio of 0.025, much higher than that of bulk ice, is representative of the outer photodesorbed ice layers and cold chemistry. Water abundances in the inner hot cores are high, but with variations from 5E-6 to 2E-4. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing, with possible explanations discussed. Water vapor emission from disks is weak, indicating that water ice is locked up in larger pebbles early on and that these pebbles have settled and drifted inward by the Class II stage. Quantitatively, many oceans of water ice are available. Extragalactic low-J H2O emission is mostly compact and collisionally excited. Prospects for future mid- to far-infrared missions are given.
VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
285 - J. Brand 2004
An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a thresho ld luminosity of a few times 10**4 Lsol above and below which we find different maser characteristics.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for exam ple associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravita tional lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا