ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation

257   0   0.0 ( 0 )
 نشر من قبل Umang Gupta
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling bias in training datasets is vital for ensuring equal treatment, or parity, between different groups in downstream applications. A naive solution is to transform the data so that it is statistically independent of group membership, but this may throw away too much information when a reasonable compromise between fairness and accuracy is desired. Another common approach is to limit the ability of a particular adversary who seeks to maximize parity. Unfortunately, representations produced by adversarial approaches may still retain biases as their efficacy is tied to the complexity of the adversary used during training. To this end, we theoretically establish that by limiting the mutual information between representations and protected attributes, we can assuredly control the parity of any downstream classifier. We demonstrate an effective method for controlling parity through mutual information based on contrastive information estimators and show that they outperform approaches that rely on variational bounds based on complex generative models. We test our approach on UCI Adult and Heritage Health datasets and demonstrate that our approach provides more informative representations across a range of desired parity thresholds while providing strong theoretical guarantees on the parity of any downstream algorithm.

قيم البحث

اقرأ أيضاً

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequen ce into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The log-likelihood of a generative model often involves both positive and negative terms. For a temporal multivariate point process, the negative term sums over all the possible event types at each time and also integrates over all the possible times . As a result, maximum likelihood estimation is expensive. We show how to instead apply a version of noise-contrastive estimation---a general parameter estimation method with a less expensive stochastic objective. Our specific instantiation of this general idea works out in an interestingly non-trivial way and has provable guarantees for its optimality, consistency and efficiency. On several synthetic and real-world datasets, our method shows benefits: for the model to achieve the same level of log-likelihood on held-out data, our method needs considerably fewer function evaluations and less wall-clock time.
Generative Adversarial Networks (GANs) have achieved great success in unsupervised learning. Despite the remarkable empirical performance, there are limited theoretical understandings on the statistical properties of GANs. This paper provides statist ical guarantees of GANs for the estimation of data distributions which have densities in a H{o}lder space. Our main result shows that, if the generator and discriminator network architectures are properly chosen (universally for all distributions with H{o}lder densities), GANs are consistent estimators of the data distributions under strong discrepancy metrics, such as the Wasserstein distance. To our best knowledge, this is the first statistical theory of GANs for H{o}lder densities. In comparison with existing works, our theory requires minimum assumptions on data distributions. Our generator and discriminator networks utilize general weight matrices and the non-invertible ReLU activation function, while many existing works only apply to invertible weight matrices and invertible activation functions. In our analysis, we decompose the error into a statistical error and an approximation error by a new oracle inequality, which may be of independent interest.
Learning data representations that are transferable and are fair with respect to certain protected attributes is crucial to reducing unfair decisions while preserving the utility of the data. We propose an information-theoretically motivated objectiv e for learning maximally expressive representations subject to fairness constraints. We demonstrate that a range of existing approaches optimize approximations to the Lagrangian dual of our objective. In contrast to these existing approaches, our objective allows the user to control the fairness of the representations by specifying limits on unfairness. Exploiting duality, we introduce a method that optimizes the model parameters as well as the expressiveness-fairness trade-off. Empirical evidence suggests that our proposed method can balance the trade-off between multiple notions of fairness and achieves higher expressiveness at a lower computational cost.
Standard approaches to group-based notions of fairness, such as emph{parity} and emph{equalized odds}, try to equalize absolute measures of performance across known groups (based on race, gender, etc.). Consequently, a group that is inherently harder to classify may hold back the performance on other groups; and no guarantees can be provided for unforeseen groups. Instead, we propose a fairness notion whose guarantee, on each group $g$ in a class $mathcal{G}$, is relative to the performance of the best classifier on $g$. We apply this notion to broad classes of groups, in particular, where (a) $mathcal{G}$ consists of all possible groups (subsets) in the data, and (b) $mathcal{G}$ is more streamlined. For the first setting, which is akin to groups being completely unknown, we devise the {sc PF} (Proportional Fairness) classifier, which guarantees, on any possible group $g$, an accuracy that is proportional to that of the optimal classifier for $g$, scaled by the relative size of $g$ in the data set. Due to including all possible groups, some of which could be too complex to be relevant, the worst-case theoretical guarantees here have to be proportionally weaker for smaller subsets. For the second setting, we devise the {sc BeFair} (Best-effort Fair) framework which seeks an accuracy, on every $g in mathcal{G}$, which approximates that of the optimal classifier on $g$, independent of the size of $g$. Aiming for such a guarantee results in a non-convex problem, and we design novel techniques to get around this difficulty when $mathcal{G}$ is the set of linear hypotheses. We test our algorithms on real-world data sets, and present interesting comparative insights on their performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا