ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-Contrastive Estimation for Multivariate Point Processes

106   0   0.0 ( 0 )
 نشر من قبل Hongyuan Mei
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The log-likelihood of a generative model often involves both positive and negative terms. For a temporal multivariate point process, the negative term sums over all the possible event types at each time and also integrates over all the possible times. As a result, maximum likelihood estimation is expensive. We show how to instead apply a version of noise-contrastive estimation---a general parameter estimation method with a less expensive stochastic objective. Our specific instantiation of this general idea works out in an interestingly non-trivial way and has provable guarantees for its optimality, consistency and efficiency. On several synthetic and real-world datasets, our method shows benefits: for the model to achieve the same level of log-likelihood on held-out data, our method needs considerably fewer function evaluations and less wall-clock time.



قيم البحث

اقرأ أيضاً

Controlling bias in training datasets is vital for ensuring equal treatment, or parity, between different groups in downstream applications. A naive solution is to transform the data so that it is statistically independent of group membership, but th is may throw away too much information when a reasonable compromise between fairness and accuracy is desired. Another common approach is to limit the ability of a particular adversary who seeks to maximize parity. Unfortunately, representations produced by adversarial approaches may still retain biases as their efficacy is tied to the complexity of the adversary used during training. To this end, we theoretically establish that by limiting the mutual information between representations and protected attributes, we can assuredly control the parity of any downstream classifier. We demonstrate an effective method for controlling parity through mutual information based on contrastive information estimators and show that they outperform approaches that rely on variational bounds based on complex generative models. We test our approach on UCI Adult and Heritage Health datasets and demonstrate that our approach provides more informative representations across a range of desired parity thresholds while providing strong theoretical guarantees on the parity of any downstream algorithm.
Learning the latent network structure from large scale multivariate point process data is an important task in a wide range of scientific and business applications. For instance, we might wish to estimate the neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To characterize the complex processes underlying the observed data, we propose a new and flexible class of nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent network structure using an efficient sparse least squares estimation approach. Using a thinning representation, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
Self- and mutually-exciting point processes are popular models in machine learning and statistics for dependent discrete event data. To date, most existing models assume stationary kernels (including the classical Hawkes processes) and simple paramet ric models. Modern applications with complex event data require more general point process models that can incorporate contextual information of the events, called marks, besides the temporal and location information. Moreover, such applications often require non-stationary models to capture more complex spatio-temporal dependence. To tackle these challenges, a key question is to devise a versatile influence kernel in the point process model. In this paper, we introduce a novel and general neural network-based non-stationary influence kernel with high expressiveness for handling complex discrete events data while providing theoretical performance guarantees. We demonstrate the superior performance of our proposed method compared with the state-of-the-art on synthetic and real data.
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two sca lable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.
Overcomplete representations and dictionary learning algorithms kept attracting a growing interest in the machine learning community. This paper addresses the emerging problem of comparing multivariate overcomplete representations. Despite a recurren t need to rely on a distance for learning or assessing multivariate overcomplete representations, no metrics in their underlying spaces have yet been proposed. Henceforth we propose to study overcomplete representations from the perspective of frame theory and matrix manifolds. We consider distances between multivariate dictionaries as distances between their spans which reveal to be elements of a Grassmannian manifold. We introduce Wasserstein-like set-metrics defined on Grassmannian spaces and study their properties both theoretically and numerically. Indeed a deep experimental study based on tailored synthetic datasetsand real EEG signals for Brain-Computer Interfaces (BCI) have been conducted. In particular, the introduced metrics have been embedded in clustering algorithm and applied to BCI Competition IV-2a for dataset quality assessment. Besides, a principled connection is made between three close but still disjoint research fields, namely, Grassmannian packing, dictionary learning and compressed sensing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا