ﻻ يوجد ملخص باللغة العربية
Large amounts of deep optical images will be available in the near future, allowing statistically significant studies of low surface brightness structures such as intracluster light (ICL) in galaxy clusters. The detection of these structures requires efficient algorithms dedicated to this task, where traditional methods suffer difficulties. We present our new Detection Algorithm with Wavelets for Intracluster light Studies (DAWIS), developed and optimised for the detection of low surface brightness sources in images, in particular (but not limited to) ICL. DAWIS follows a multiresolution vision based on wavelet representation to detect sources, embedded in an iterative procedure called synthesis-by-analysis approach to restore the complete unmasked light distribution of these sources with very good quality. The algorithm is built so sources can be classified based on criteria depending on the analysis goal; we display in this work the case of ICL detection and the measurement of ICL fractions. We test the efficiency of DAWIS on 270 mock images of galaxy clusters with various ICL profiles and compare its efficiency to more traditional ICL detection methods such as the surface brightness threshold method. We also run DAWIS on a real galaxy cluster image, and compare the output to results obtained with previous multiscale analysis algorithms. We find in simulations that in average DAWIS is able to disentangle galaxy light from ICL more efficiently, and to detect a greater quantity of ICL flux due to the way it handles sky background noise. We also show that the ICL fraction, a metric used on a regular basis to characterise ICL, is subject to several measurement biases both on galaxies and ICL fluxes. In the real galaxy cluster image, DAWIS detects a faint and extended source with an absolute magnitude two orders brighter than previous multiscale methods.
Precision measurements of charged cosmic rays have recently been carried out by space-born (e.g. AMS-02), or ground experiments (e.g. HESS). These measured data are important for the studies of astro-physical phenomena, including supernova remnants,
Deep learning techniques have been well explored in the transiting exoplanet field, however previous work mainly focuses on classification and inspection. In this work, we develop a novel detection algorithm based on a well-proven object detection fr
The largest stellar halos in the universe are found in massive galaxy clusters, where interactions and mergers of galaxies, along with the cluster tidal field, all act to strip stars from their host galaxies and feed the diffuse intracluster light (I
We present the Signal Detection using Random-Forest Algorithm (SIDRA). SIDRA is a detection and classification algorithm based on the Machine Learning technique (Random Forest). The goal of this paper is to show the power of SIDRA for quick and accur
The study of intracluster light can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, mo