ﻻ يوجد ملخص باللغة العربية
The largest stellar halos in the universe are found in massive galaxy clusters, where interactions and mergers of galaxies, along with the cluster tidal field, all act to strip stars from their host galaxies and feed the diffuse intracluster light (ICL) and extended halos of brightest cluster galaxies (BCGs). Studies of the nearby Virgo Cluster reveal a variety of accretion signatures imprinted in the morphology and stellar populations of its ICL. While simulations suggest the ICL should grow with time, attempts to track this evolution across clusters spanning a range of mass and redshift have proved difficult due to a variety of observational and definitional issues. Meanwhile, studies of nearby galaxy groups reveal the earliest stages of ICL formation: the extremely diffuse tidal streams formed during interactions in the group environment.
Galaxy groups differ from clusters primarily by way of their lower masses, M~10^14 M_sun vs. M~10^15 M_sun. We discuss how mass affects the thermal state of the intracluster or the intragroup medium, specifically as to their entropy levels and radial
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground s
We examine the outskirts of galaxy clusters in the C-EAGLE simulations to quantify the `edges of the stellar and dark matter distribution. The radius of the steepest slope in the dark matter, commonly used as a proxy for the splashback radius, is loc
With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters ranging from 3$times10^{13}<$M$_{500,c}$ [M$_odot$]$<9times10^{14}$ at 0.29$<$z$<
In massive objects, such as galaxy clusters, the turbulent velocity dispersion, $sigma_mathrm{turb}$, is tightly correlated to both the object mass, $M$, and the thermal energy. Here, we investigate whether these scaling laws extend to lower-mass obj