ﻻ يوجد ملخص باللغة العربية
Deep learning techniques have been well explored in the transiting exoplanet field, however previous work mainly focuses on classification and inspection. In this work, we develop a novel detection algorithm based on a well-proven object detection framework in the computer vision field. Through training the network on the light curves of the confirmed Kepler exoplanets, our model yields 94% precision and 95% recall for transits with signal-to-noise ratio higher than 6 (set the confidence threshold to 0.6). Giving a slightly lower confidence threshold, recall can reach higher than 97%, which makes our model applicable for large-scale search. We also transfer the trained model to the TESS data and obtain similar performance. The results of our algorithm match the intuition of the human visual perception and make it easy to find single transiting candidates. Moreover, the parameters of the output bounding boxes can also help to find multiplanet systems. Our network and detection functions are implemented in the Deep-Transit toolkit, which is an open-source Python package hosted on GitHub and PyPI.
We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighb
Since the start of the Wide Angle Search for Planets (WASP) program, more than 160 transiting exoplanets have been discovered in the WASP data. In the past, possible transit-like events identified by the WASP pipeline have been vetted by human inspec
Ground-based $gamma$-ray observatories, such as the VERITAS array of imaging atmospheric Cherenkov telescopes, provide insight into very-high-energy (VHE, $mathrm{E}>100,mathrm{GeV}$) astrophysical transient events. Examples include the evaporation o
Photometric observations of exoplanet transits can be used to derive the orbital and physical parameters of an exoplanet. We analyzed several transit light curves of exoplanets that are suitable for ground-based observations whose complete informatio
Object detection in natural scenes can be a challenging task. In many real-life situations, the visible spectrum is not suitable for traditional computer vision tasks. Moving outside the visible spectrum range, such as the thermal spectrum or the nea