ترغب بنشر مسار تعليمي؟ اضغط هنا

Example-based Real-time Clothing Synthesis for Virtual Agents

350   0   0.0 ( 0 )
 نشر من قبل Dinesh Manocha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a real-time cloth animation method for dressing virtual humans of various shapes and poses. Our approach formulates the clothing deformation as a high-dimensional function of body shape parameters and pose parameters. In order to accelerate the computation, our formulation factorizes the clothing deformation into two independent components: the deformation introduced by body pose variation (Clothing Pose Model) and the deformation from body shape variation (Clothing Shape Model). Furthermore, we sample and cluster the poses spanning the entire pose space and use those clusters to efficiently calculate the anchoring points. We also introduce a sensitivity-based distance measurement to both find nearby anchoring points and evaluate their contributions to the final animation. Given a query shape and pose of the virtual agent, we synthesize the resulting clothing deformation by blending the Taylor expansion results of nearby anchoring points. Compared to previous methods, our approach is general and able to add the shape dimension to any clothing pose model. %and therefore it is more general. Furthermore, we can animate clothing represented with tens of thousands of vertices at 50+ FPS on a CPU. Moreover, our example database is more representative and can be generated in parallel, and thereby saves the training time. We also conduct a user evaluation and show that our method can improve a users perception of dressed virtual agents in an immersive virtual environment compared to a conventional linear blend skinning method.



قيم البحث

اقرأ أيضاً

Virtual try-on is a promising application of computer graphics and human computer interaction that can have a profound real-world impact especially during this pandemic. Existing image-based works try to synthesize a try-on image from a single image of a target garment, but it inherently limits the ability to react to possible interactions. It is difficult to reproduce the change of wrinkles caused by pose and body size change, as well as pulling and stretching of the garment by hand. In this paper, we propose an alternative per garment capture and synthesis workflow to handle such rich interactions by training the model with many systematically captured images. Our workflow is composed of two parts: garment capturing and clothed person image synthesis. We designed an actuated mannequin and an efficient capturing process that collects the detailed deformations of the target garments under diverse body sizes and poses. Furthermore, we proposed to use a custom-designed measurement garment, and we captured paired images of the measurement garment and the target garments. We then learn a mapping between the measurement garment and the target garments using deep image-to-image translation. The customer can then try on the target garments interactively during online shopping.
Traditional high-quality 3D graphics requires large volumes of fine-detailed scene data for rendering. This demand compromises computational efficiency and local storage resources. Specifically, it becomes more concerning for future wearable and port able virtual and augmented reality (VR/AR) displays. Recent approaches to combat this problem include remote rendering/streaming and neural representations of 3D assets. These approaches have redefined the traditional local storage-rendering pipeline by distributed computing or compression of large data. However, these methods typically suffer from high latency or low quality for practical visualization of large immersive virtual scenes, notably with extra high resolution and refresh rate requirements for VR applications such as gaming and design. Tailored for the future portable, low-storage, and energy-efficient VR platforms, we present the first gaze-contingent 3D neural representation and view synthesis method. We incorporate the human psychophysics of visual- and stereo-acuity into an egocentric neural representation of 3D scenery. Furthermore, we jointly optimize the latency/performance and visual quality, while mutually bridging human perception and neural scene synthesis, to achieve perceptually high-quality immersive interaction. Both objective analysis and subjective study demonstrate the effectiveness of our approach in significantly reducing local storage volume and synthesis latency (up to 99% reduction in both data size and computational time), while simultaneously presenting high-fidelity rendering, with perceptual quality identical to that of fully locally stored and rendered high-quality imagery.
We contribute several practical extensions to the probe based irradiance-field-with-visibility representation to improve image quality, constant and asymptotic performance, memory efficiency, and artist control. We developed these extensions in the p rocess of incorporating the previous work into the global illumination solutions of the NVIDIA RTXGI SDK, the Unity and Unreal Engine 4 game engines, and proprietary engines for several commercial games. These extensions include: a single, intuitive tuning parameter (the self-shadow bias); heuristics to speed transitions in the global illumination; reuse of irradiance data as prefiltered radiance for recursive glossy reflection; a probe state machine to prune work that will not affect the final image; and multiresolution cascaded volumes for large worlds.
This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results
This paper describes an experimental system designed for development of real time voice synthesis applications. The system is composed from a DSP coprocessor card, equipped with an TMS320C25 or TMS320C50 chip, voice acquisition module (ADDA2),host co mputer (IBM-PC compatible), software specific tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا