ترغب بنشر مسار تعليمي؟ اضغط هنا

Per Garment Capture and Synthesis for Real-time Virtual Try-on

100   0   0.0 ( 0 )
 نشر من قبل Toby Chong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Virtual try-on is a promising application of computer graphics and human computer interaction that can have a profound real-world impact especially during this pandemic. Existing image-based works try to synthesize a try-on image from a single image of a target garment, but it inherently limits the ability to react to possible interactions. It is difficult to reproduce the change of wrinkles caused by pose and body size change, as well as pulling and stretching of the garment by hand. In this paper, we propose an alternative per garment capture and synthesis workflow to handle such rich interactions by training the model with many systematically captured images. Our workflow is composed of two parts: garment capturing and clothed person image synthesis. We designed an actuated mannequin and an efficient capturing process that collects the detailed deformations of the target garments under diverse body sizes and poses. Furthermore, we proposed to use a custom-designed measurement garment, and we captured paired images of the measurement garment and the target garments. We then learn a mapping between the measurement garment and the target garments using deep image-to-image translation. The customer can then try on the target garments interactively during online shopping.



قيم البحث

اقرأ أيضاً

We present a real-time cloth animation method for dressing virtual humans of various shapes and poses. Our approach formulates the clothing deformation as a high-dimensional function of body shape parameters and pose parameters. In order to accelerat e the computation, our formulation factorizes the clothing deformation into two independent components: the deformation introduced by body pose variation (Clothing Pose Model) and the deformation from body shape variation (Clothing Shape Model). Furthermore, we sample and cluster the poses spanning the entire pose space and use those clusters to efficiently calculate the anchoring points. We also introduce a sensitivity-based distance measurement to both find nearby anchoring points and evaluate their contributions to the final animation. Given a query shape and pose of the virtual agent, we synthesize the resulting clothing deformation by blending the Taylor expansion results of nearby anchoring points. Compared to previous methods, our approach is general and able to add the shape dimension to any clothing pose model. %and therefore it is more general. Furthermore, we can animate clothing represented with tens of thousands of vertices at 50+ FPS on a CPU. Moreover, our example database is more representative and can be generated in parallel, and thereby saves the training time. We also conduct a user evaluation and show that our method can improve a users perception of dressed virtual agents in an immersive virtual environment compared to a conventional linear blend skinning method.
Traditional high-quality 3D graphics requires large volumes of fine-detailed scene data for rendering. This demand compromises computational efficiency and local storage resources. Specifically, it becomes more concerning for future wearable and port able virtual and augmented reality (VR/AR) displays. Recent approaches to combat this problem include remote rendering/streaming and neural representations of 3D assets. These approaches have redefined the traditional local storage-rendering pipeline by distributed computing or compression of large data. However, these methods typically suffer from high latency or low quality for practical visualization of large immersive virtual scenes, notably with extra high resolution and refresh rate requirements for VR applications such as gaming and design. Tailored for the future portable, low-storage, and energy-efficient VR platforms, we present the first gaze-contingent 3D neural representation and view synthesis method. We incorporate the human psychophysics of visual- and stereo-acuity into an egocentric neural representation of 3D scenery. Furthermore, we jointly optimize the latency/performance and visual quality, while mutually bridging human perception and neural scene synthesis, to achieve perceptually high-quality immersive interaction. Both objective analysis and subjective study demonstrate the effectiveness of our approach in significantly reducing local storage volume and synthesis latency (up to 99% reduction in both data size and computational time), while simultaneously presenting high-fidelity rendering, with perceptual quality identical to that of fully locally stored and rendered high-quality imagery.
We propose a new generative model for 3D garment deformations that enables us to learn, for the first time, a data-driven method for virtual try-on that effectively addresses garment-body collisions. In contrast to existing methods that require an un desirable postprocessing step to fix garment-body interpenetrations at test time, our approach directly outputs 3D garment configurations that do not collide with the underlying body. Key to our success is a new canonical space for garments that removes pose-and-shape deformations already captured by a new diffused human body model, which extrapolates body surface properties such as skinning weights and blendshapes to any 3D point. We leverage this representation to train a generative model with a novel self-supervised collision term that learns to reliably solve garment-body interpenetrations. We extensively evaluate and compare our results with recently proposed data-driven methods, and show that our method is the first to successfully address garment-body contact in unseen body shapes and motions, without compromising realism and detail.
118 - Bin Ren , Hao Tang , Fanyang Meng 2021
2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations to gether, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
134 - Xin Gao 2021
Image virtual try-on task has abundant applications and has become a hot research topic recently. Existing 2D image-based virtual try-on methods aim to transfer a target clothing image onto a reference person, which has two main disadvantages: cannot control the size and length precisely; unable to accurately estimate the users figure in the case of users wearing thick clothes, resulting in inaccurate dressing effect. In this paper, we put forward an akin task that aims to dress clothing for underwear models. %, which is also an urgent need in e-commerce scenarios. To solve the above drawbacks, we propose a Shape Controllable Virtual Try-On Network (SC-VTON), where a graph attention network integrates the information of model and clothing to generate the warped clothing image. In addition, the control points are incorporated into SC-VTON for the desired clothing shape. Furthermore, by adding a Splitting Network and a Synthesis Network, we can use clothing/model pair data to help optimize the deformation module and generalize the task to the typical virtual try-on task. Extensive experiments show that the proposed method can achieve accurate shape control. Meanwhile, compared with other methods, our method can generate high-resolution results with detailed textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا