ﻻ يوجد ملخص باللغة العربية
Most human action recognition systems typically consider static appearances and motion as independent streams of information. In this paper, we consider the evolution of human pose and propose a method to better capture interdependence among skeleton joints. Our model extracts motion information from each joint independently, reweighs the information and finally performs inter-joint reasoning. The effectiveness of pose and joint-based representations is strengthened using a geometry-aware data augmentation technique which jitters pose heatmaps while retaining the dynamics of the action. Our best model gives an absolute improvement of 8.19% on JHMDB, 4.31% on HMDB and 1.55 mAP on Charades datasets over state-of-the-art methods using pose heat-maps alone. Fusing with RGB and flow streams leads to improvement over state-of-the-art. Our model also outperforms the baseline on Mimetics, a dataset with out-of-context videos by 1.14% while using only pose heatmaps. Further, to filter out clips irrelevant for action recognition, we re-purpose our model for clip selection guided by pose information and show improved performance using fewer clips.
By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-of-the-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and t
In this work we propose to utilize information about human actions to improve pose estimation in monocular videos. To this end, we present a pictorial structure model that exploits high-level information about activities to incorporate higher-order p
We address human action recognition from multi-modal video data involving articulated pose and RGB frames and propose a two-stream approach. The pose stream is processed with a convolutional model taking as input a 3D tensor holding data from a sub-s
We propose a new spatio-temporal attention based mechanism for human action recognition able to automatically attend to the hands most involved into the studied action and detect the most discriminative moments in an action. Attention is handled in a
We present a novel end-to-end framework named as GSNet (Geometric and Scene-aware Network), which jointly estimates 6DoF poses and reconstructs detailed 3D car shapes from single urban street view. GSNet utilizes a unique four-way feature extraction