ﻻ يوجد ملخص باللغة العربية
Primordial black holes created in the early Universe can constitute a substantial fraction of dark matter and serve as seeds for early galaxy formation. Binary primordial black holes with masses of the order of a few dozen solar masses can explain the observed LIGO/Virgo gravitational-wave events. In this Letter, we show that primordial black holes with log-normal mass spectrum centered at $M_0simeq 15-17 M_odot$ simultaneously explain both the chirp mass distribution of the detected LIGO/Virgo binary black holes and the differential chirp mass distribution of merging binaries as inferred from the LIGO/Virgo observations. The obtained parameters of log-normal mass spectrum of primordial black holes also give the fraction of seeds with $Mgtrsim 10^4 M_odot$ required to explain the observed population of supermassive black holes at $z=6-7$.
Available data on the chirp mass distribution of the coalescing black hole binaries in O1-O3 LIGO/Virgo runs are analyzed and compared statistically with the distribution calculated under the assumption that these black holes are primordial with a lo
We study formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with MESA. We find that a significant fraction of PopIII binaries form massive B
Gravitational waves can probe the existence of planetary-mass primordial black holes. Considering a mass range of $[10^{-7}-10^{-2}]M_odot$, inspiraling primordial black holes could emit either continuous gravitational waves, quasi-monochromatic sign
Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray back
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge