ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation pathway of Population III coalescing binary black holes through stable mass transfer

124   0   0.0 ( 0 )
 نشر من قبل Kohei Inayoshi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with MESA. We find that a significant fraction of PopIII binaries form massive BBHs through stable mass transfer between two stars in a binary, without experiencing common envelope phases. We investigate necessary conditions required for PopIII binaries to form BBHs coalescing within the Hubble time with a semi-analytical model calibrated by the stellar evolution simulations. The formation efficiency of coalescing PopIII BBHs is estimated for two different initial conditions for PopIII binaries with large and small separations, respectively. Consequently, in both models, $sim 10%$ of the total PopIII binaries form BBHs only through stable mass transfer and $sim 10%$ of these BBHs merge due to gravitational wave emission within the Hubble time. Furthermore, the chirp mass of merging BBHs has a flat distribution over $15lesssim M_{rm chirp}/M_odot lesssim 35$. This formation pathway of PopIII BBHs is presumably robust because stable mass transfer is less uncertain than common envelope evolution, which is the main formation channel for Population II BBHs. We also test the hypothesis that the BBH mergers detected by LIGO originate from PopIII stars using our result and the total number of PopIII stars formed in the early universe as inferred from the optical depth measured by Planck. We conclude that the PopIII BBH formation scenario can explain the mass-weighted merger rate of the LIGOs O1 events with the maximal PopIII formation efficiency inferred from the Planck measurement, even without BBHs formed by unstable mass transfer or common envelope phases.



قيم البحث

اقرأ أيضاً

Primordial black holes created in the early Universe can constitute a substantial fraction of dark matter and serve as seeds for early galaxy formation. Binary primordial black holes with masses of the order of a few dozen solar masses can explain th e observed LIGO/Virgo gravitational-wave events. In this Letter, we show that primordial black holes with log-normal mass spectrum centered at $M_0simeq 15-17 M_odot$ simultaneously explain both the chirp mass distribution of the detected LIGO/Virgo binary black holes and the differential chirp mass distribution of merging binaries as inferred from the LIGO/Virgo observations. The obtained parameters of log-normal mass spectrum of primordial black holes also give the fraction of seeds with $Mgtrsim 10^4 M_odot$ required to explain the observed population of supermassive black holes at $z=6-7$.
We performed population synthesis simulations of Population III binary stars with Maxwellian kick velocity distribution when MGCOs (Mass Gap Compact Objects with mass 2--5$,M_{odot}$) are formed. We found that for eight kick velocity dispersion model s of $sigma_{rm k}=0$--$500$ km/s, the mean mass of black hole (BH)-MGCO binary is $sim (30 ,M_odot,,2.6 ,M_odot)$. In numerical data of our simulations, we found the existence of BH-MGCO binary with mass $(22.9 ,M_odot,,2.5 ,M_odot)$ which looks like GW190814.
In the case of zero-metal (population III or Pop III) stars, we show that the total mass of binary black holes from binary Pop III star evolution can be $sim 150 ,M_{odot}$, which agrees with the mass of the binary black hole GW190521 recently discov ered by LIGO/Virgo. The event rate of such binary black hole mergers is estimated as 0.13--0.66$~(rho_{rm SFR}/(6times10^5~M_{odot}/{rm Mpc}^3))~Err_{rm sys}~{rm yr^{-1}~Gpc^{-3}}$, where $rho_{rm SFR}$ and $Err_{rm sys}$ are the cumulative comoving mass density of Pop III stars depending on star formation rate and the systematic errors depending on uncertainties in the Pop III binary parameters, respectively. The event rate in our fiducial model with $rho_{rm SFR}=6times10^5~M_{odot}/{rm Mpc}^3$ and $ Err_{rm sys}=1$ is 0.13--0.66$~{rm yr^{-1}~Gpc^{-3}}$, which is consistent with the observed value of 0.02--0.43$~{rm yr^{-1}~Gpc^{-3}}$.
Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In t he early Universe, the first stellar clusters were particularly dense, as fragmentation typically only occurred at densities above $10^9$cm$^{-3}$, and the radii of the protostars were enhanced due to the larger accretion rates, suggesting a potentially more relevant role of stellar collisions. We present here a detailed parameter study to assess how the number of collisions as well as the mass growth of the most massive object depends on the properties of the cluster, and we characterize the time evolution with three effective parameters, the time when most collisions occur, the duration of the collisions period, as well as the normalization required to obtain the total number of collisions. We apply our results to typical Population III (Pop.III) clusters of about $1000$M$_odot$, finding that a moderate enhancement of the mass of the most massive star by a factor of a few can be expected. For more massive Pop.III clusters as expected in the first atomic cooling halos, we expect a more significant enhancement by a factor of $15-32$. We therefore conclude that collisions in massive Pop.III clusters were likely relevant to form the first intermediate mass black holes.
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $sim 30~M_odot$. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB ($Omega_{rm gw}$) and the electron scattering optical depth ($tau_{rm e}$), produced by PopIII stars, assuming that $f_{rm esc}approx 10%$ of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if $tau_{rm e} gtrsim 0.07$, consistent with the recent Planck measurement of $tau_e=0.055 pm 0.09$. Moreover, the spectral index of the background from PopIII BBHs becomes as small as ${rm d}ln Omega_{rm gw}/{rm d}ln flesssim 0.3$ at $f gtrsim 30$ Hz, which is significantly flatter than the value $sim 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near $30-50$ Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا