ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing planetary-mass primordial black holes with continuous gravitational waves

80   0   0.0 ( 0 )
 نشر من قبل Andrew L. Miller
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves can probe the existence of planetary-mass primordial black holes. Considering a mass range of $[10^{-7}-10^{-2}]M_odot$, inspiraling primordial black holes could emit either continuous gravitational waves, quasi-monochromatic signals that last for many years, or transient continuous waves, signals whose frequency evolution follows a power law and last for $mathcal{O}$(hours-months). We show that primordial black hole binaries in our galaxy may produce detectable gravitational waves for different mass functions and formation mechanisms. In order to detect these inspirals, we adapt methods originally designed to search for gravitational waves from asymmetrically rotating neutron stars. The first method, the Frequency-Hough, exploits the continuous, quasi-monochromatic nature of inspiraling black holes that are sufficiently light and far apart such that their orbital frequencies can be approximated as linear with a small spin-up. The second method, the Generalized Frequency-Hough, drops the assumption of linearity and allows the signal frequency to follow a power-law evolution. We explore the parameter space to which each method is sensitive, derive a theoretical sensitivity estimate, determine optimal search parameters and calculate the computational cost of all-sky and directed searches. We forecast limits on the abundance of primordial black holes within our galaxy, showing that we can constrain the fraction of dark matter that primordial black holes compose, $f_{rm PBH}$, to be $f_{rm PBH}lesssim 1$ for chirp masses between $[4times 10^{-5}-10^{-3}]M_odot$ for current detectors. For the Einstein Telescope, we expect the constraints to improve to $f_{rm PBH}lesssim 10^{-2}$ for chirp masses between [$10^{-4}-10^{-3}]M_odot$.



قيم البحث

اقرأ أيضاً

Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement of scalar perturbations which inevitably produce the induced gravitational waves (GWs). We calculate the induced GWs up to the third-order correction which not only enhances the amplitude of induced GWs, but also extends the cutoff frequency from $2k_*$ to $3k_*$. Such effects of the third-order correction lead to an around $10%$ increase of the signal-to-noise ratio (SNR) for both LISA and pulsar timing array (PTA) observations, and significantly widen the mass range of PBHs in the stellar mass window accompanying detectable induced GWs for PTA observations including IPTA, FAST and SKA. On the other hand, the null detections of the induced GWs by LISA and PTA experiments will exclude the possibility that all of the DM is comprised of PBHs and the GW events detected by LIGO/Virgo are generated by PBHs.
Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peak s of primordial fluctuations on small scales, as long as the amplitude of primordial perturbations on small scales is enhanced significantly relative to the amplitude of perturbations observed on large scales. One consequence of these small-scale perturbations is generation of stochastic gravitational waves that arise at second order in scalar perturbations, mostly before the formation of the PBHs. These induced gravitational waves have been shown, assuming gaussian initial conditions, to be comparable to the current limits from the European Pulsar Timing Array, severely restricting this scenario. We show, however, that models with enhanced fluctuation amplitudes typically involve non-gaussian initial conditions. With such initial conditions, the current limits from pulsar timing can be evaded. The amplitude of the induced gravitational-wave background can be larger or smaller than the stochastic gravitational-wave background from supermassive black hole binaries.
112 - Bin Liu , Dong Lai 2021
Merging compact black-hole (BH) binaries are likely to exist in the nuclear star clusters around supermassive BHs (SMBHs), such as Sgr A$^ast$. They may also form in the accretion disks of active galactic nuclei. Such compact binaries can emit gravit ational waves (GWs) in the low-frequency band (0.001-1 Hz) that are detectable by several planned space-borne GW observatories. We show that the orbital axis of the compact binary may experience significant variation due to the frame-dragging effect associated with the spin of the SMBH. The dynamical behavior of the orbital axis can be understood analytically as a resonance phenomenon. We show that rate of change of the binary orbital axis encodes the information on the spin of the SMBH. Therefore detecting GWs from compact binaries around SMBHs, particularly the modulation of the waveform associated with the variation of the binary orbital axis, can provide a new probe on the spins of SMBHs.
Recent observational constraints indicate that primordial black holes (PBHs) with the mass scale $sim 10^{-12}M_{odot}$ can explain most of dark matter in the Universe. To produce this kind of PBHs, we need an enhance in the primordial scalar curvatu re perturbations to the order of ${mathcal{O}(10^{-2})}$ at the scale $ k sim 10^{12}~rm Mpc^{-1}$. Here, we investigate the production of PBHs and induced gravitational waves (GWs) in the framework of textbf{$k$-inflation}. We solve numerically the Mukhanov-Sasaki equation to obtain the primordial scalar power spectrum. In addition, we estimate the PBHs abundance $f_{text{PBH}}^{text{peak}}$ as well as the energy density parameter $Omega_{rm GW,0}$ of induced GWs. Interestingly enough is that for a special set of model parameters, we estimate the mass scale and the abundance of PBHs as $sim{cal O}(10^{-13})M_{odot}$ and $f_{text{PBH}}^{text{peak}}=0.96$, respectively. This confirms that the mechanism of PBHs production in our inflationary model can justify most of dark matter. Furthermore, we evaluate the GWs energy density parameter and conclude that it behaves like a power-law function $Omega_{rm GW}sim (f/f_c)^n$ where in the infrared limit $fll f_{c}$, the power index reads $n=3-2/ln(f_c/f)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا