ﻻ يوجد ملخص باللغة العربية
Antimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localised bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemistries and biomaterial design approaches enabling on-demand activation of antibiotic-free antimicrobial functionality following an infection that are environment-friendly, flexible and commercially-viable. This study explores the feasibility of integrating a bioresorbable electrospun polymer scaffold with localised antimicrobial photodynamic therapy (aPDT) capability. To enable aPDT, we encapsulated a photosensitiser (PS) in polyester fibres in the PS inert state, so that the antibacterial function would be activated on-demand via a visible light source. Fibrous scaffolds were successfully electrospun from FDA-approved polyesters, either poly(epsilon-caprolactone (PCL) or poly[(rac-lactide)-co-glycolide] (PLGA) with encapsulated PS (either methylene blue (MB) or erythrosin B (ER)). The electrospun fibres achieved an ~100 wt.% loading efficiency of PS, which significantly increased their tensile modulus and reduced their average fibre diameter and pore size with respect to PS-free controls. In vitro, PS release varied between a burst release profile to limited release within 100 hours depending on the selected scaffold formulation. Exposure of PS-encapsulated PCL fibres to visible light successfully led to at least a 1 log reduction in E. coli viability after 60 minutes of light exposure whereas PS-free electrospun controls did not inactive microbes. This study successfully demonstrates the significant potential of PS-encapsulated electrospun fibres as photodynamically active biomaterial for antibiotic-free infection control.
Bone regeneration is a clinical challenge that requires multiple approaches. Sometimes, it also includes the development of new osteogenic and antibacterial biomaterials to treat the occurrence of possible infection processes derived from surgery. Th
It is now evident that the commonly accepted strategy for treatment of HIV/AIDS by highly active antiretroviral therapy (HAART) will not lead to eradication of HIV in a reasonable time. This is straightforward from the typical exponential viral load
We describe reshaping of active textiles actuated by bending of Janus fibres comprising both active and passive components. A great variety of shapes, determined by minimising the overall energy of the fabric, can be produced by varying bending direc
Simple ideas, endowed from the mathematical theory of control, are used in order to analyze in general grounds the human immune system. The general principles are minimization of the pathogen load and economy of resources. They should constrain the p
We study the early stages of viral infection, and the distribution of times to obtain a persistent infection. The virus population proliferates by entering and reproducing inside a target cell until a sufficient number of new virus particles are rele