ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Distribution for Persistent Viral Infection

188   0   0.0 ( 0 )
 نشر من قبل Michael Assaf
 تاريخ النشر 2019
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the early stages of viral infection, and the distribution of times to obtain a persistent infection. The virus population proliferates by entering and reproducing inside a target cell until a sufficient number of new virus particles are released via a burst, with a given burst size distribution, which results in the death of the infected cell. Starting with a 2D model describing the joint dynamics of the virus and infected cell populations, we analyze the corresponding master equation using the probability generating function formalism. Exploiting time-scale separation between the virus and infected cell dynamics, the 2D model can be cast into an effective 1D model. To this end, we solve the 1D model analytically for a particular choice of burst size distribution. In the general case, we solve the model numerically by performing extensive Monte-Carlo simulations, and demonstrate the equivalence between the 2D and 1D models by measuring the Kullback-Leibler divergence between the corresponding distributions. Importantly, we find that the distribution of infection times is highly skewed with a fat exponential right tail. This indicates that there is non-negligible portion of individuals with an infection time, significantly longer than the mean, which may have implications on when HIV tests should be performed.



قيم البحث

اقرأ أيضاً

The flux of visitors through popular places undoubtedly influences viral spreading -- from H1N1 and Zika viruses spreading through physical spaces such as airports, to rumors and ideas spreading though online spaces such as chatrooms and social media . However there is a lack of understanding of the types of viral dynamics that can result. Here we present a minimal dynamical model which focuses on the time-dependent interplay between the {em mobility through} and the {em occupancy of} such spaces. Our generic model permits analytic analysis while producing a rich diversity of infection profiles in terms of their shapes, durations, and intensities. The general features of these theoretical profiles compare well to real-world data of recent social contagion phenomena.
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment, and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of stiff equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
Epidemic models are useful tools in the fight against infectious diseases, as they allow policy makers to test and compare various strategies to limit disease transmission while mitigating collateral damage on the economy. Epidemic models that are mo re faithful to the microscopic details of disease transmission can offer more reliable projections, which in turn can lead to more reliable control strategies. For example, many epidemic models describe disease progression via a series of artificial stages or compartments (e.g. exposed, activated, infectious, etc.) but an epidemic model that explicitly tracks time since infection (TSI) can provide a more precise description. At present, epidemic models with compartments are more common than TSI models , largely due to higher computational cost and complexity typically associated with TSI models. Here, however, we show that with the right discretization scheme a TSI model is not much more difficult to solve than a comparment model with three or four stages for the infected class. We also provide a new perspective for adding stages to a TSI model in a way that decouples the disease transmission dynamics from the residence time distributions at each stage. These results are also generalized for age-structured TSI models in an appendix. Finally, as proof-of-principle for the efficiency of the proposed numerical methods, we provide calculations for optimal epidemic control by non-pharmaceutical intervention. Many of the tools described in this report are available through the software package pyross
126 - Jose A. Cuesta 2010
Eigens quasi-species model describes viruses as ensembles of different mutants of a high fitness master genotype. Mutants are assumed to have lower fitness than the master type, yet they coexist with it forming the quasi-species. When the mutation ra te is sufficiently high, the master type no longer survives and gets replaced by a wide range of mutant types, thus destroying the quasi-species. It is the so-called error catastrophe. But natural selection acts on phenotypes, not genotypes, and huge amounts of genotypes yield the same phenotype. An important consequence of this is the appearance of beneficial mutations which increase the fitness of mutants. A model has been recently proposed to describe quasi-species in the presence of beneficial mutations. This model lacks the error catastrophe of Eigens model and predicts a steady state in which the viral population grows exponentially. Extinction can only occur if the infectivity of the quasi-species is so low that this exponential is negative. In this work I investigate the transient of this model when infection is started from a small amount of low fitness virions. I prove that, beyond an initial regime where viral population decreases (and can go extinct), the growth of the population is super-exponential. Hence this population quickly becomes so huge that selection due to lack of host cells to be infected begins to act before the steady state is reached. This result suggests that viral infection may widespread before the virus has developed its optimal form.
202 - S. Suweis , E. Bertuzzo , L. Mari 2012
We present new theoretical and empirical results on the probability distributions of species persistence times in natural ecosystems. Persistence times, defined as the timespans occurring between species colonization and local extinction in a given g eographic region, are empirically estimated from local observations of species presence/absence. A connected sampling problem is presented, generalized and solved analytically. Species persistence is shown to provide a direct connection with key spatial macroecological patterns like species-area and endemics-area relationships. Our empirical analysis pertains to two different ecosystems and taxa: a herbaceous plant community and a estuarine fish database. Despite the substantial differences in ecological interactions and spatial scales, we confirm earlier evidence on the general properties of the scaling of persistence times, including the predicted effects of the structure of the spatial interaction network. The framework tested here allows to investigate directly nature and extent of spatial effects in the context of ecosystem dynamics. The notable coherence between spatial and temporal macroecological patterns, theoretically derived and empirically verified, is suggested to underlie general features of the dynamic evolution of ecosystems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا