ﻻ يوجد ملخص باللغة العربية
Bone regeneration is a clinical challenge that requires multiple approaches. Sometimes, it also includes the development of new osteogenic and antibacterial biomaterials to treat the occurrence of possible infection processes derived from surgery. This study evaluates the antibacterial properties of meso-macroporous scaffolds coated with gelatin and based on a bioactive glass and after being doped with 4% ZnO (4ZN-GE) and loaded with saturated and minimally inhibitory concentrations of one of the antibiotics levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After the physicochemical characterization of the materials, inorganic ion and antibiotic release studies were performed from the scaffolds. In addition, molecular modeling allowed the determination of electrostatic potential density maps and hydrogen bonds of the antibiotics and the glass matrix. In vitro antibacterial studies (in plankton, inhibition halos and biofilm destruction) with S. aureus and E. coli as model bacteria showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in cultures of E. coli with LEVO or GENTA. Furthermore, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and total destruction of E. coli biofilm was achieved with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide much needed options for the treatment of bone infection.
Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2)
Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local envir
There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteost
A very small number of biomaterials investigated for bone regeneration was reported as able to prevent the oxidative stress. In this study beads based on alginate hydrogel and mesoporous glasses (MG) containing different amounts of cerium oxides (Ce3
Antimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localised bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemis