ﻻ يوجد ملخص باللغة العربية
The logarithmic representation of infinitesimal generators is generalized to the cases when the evolution operator is unbounded. The generalized result is applicable to the representation of infinitesimal generators of unbounded evolution operators, where unboundedness of evolution operator is an essential ingredient of nonlinear analysis. In conclusion a general framework for the identification between the infinitesimal generators with evolution operators is established. A mathematical framework for such an identification is indispensable to the rigorous treatment of nonlinear transforms: e.g., transforms appearing in the theory of integrable systems.
Generally-unbounded infinitesimal generators are studied in the context of operator topology. Beginning with the definition of seminorm, the concept of locally convex topological vector space is introduced as well as the concept of Fr{e}chet space. T
The concept of logarithmic representation of infinitesimal generators is introduced, and it is applied to clarify the algebraic structure of bounded and unbounded infinitesimal generators. In particular, by means of the logarithmic representation, th
In this paper we {em discuss} diverse aspects of mutual relationship between adjoints and formal adjoints of unbounded operators bearing a matrix structure. We emphasize on the behaviour of row and column operators as they turn out to be the germs of
Dynamical semigroups have become the key structure for describing open system dynamics in all of physics. Bounded generators are known to be of a standard form, due to Gorini, Kossakowski, Sudarshan and Lindblad. This form is often used also in the u
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of ma