ﻻ يوجد ملخص باللغة العربية
The concept of logarithmic representation of infinitesimal generators is introduced, and it is applied to clarify the algebraic structure of bounded and unbounded infinitesimal generators. In particular, by means of the logarithmic representation, the bounded components can be extracted from generally-unbounded infinitesimal generators. In conclusion the concept of module over a Banach algebra is proposed as the generalization of Banach algebra. As an application to mathematical physics, the rigorous formulation of rotation group, which consists of unbounded operators being written by differential operators, is provided using the module over a Banach algebra.
The logarithmic representation of infinitesimal generators is generalized to the cases when the evolution operator is unbounded. The generalized result is applicable to the representation of infinitesimal generators of unbounded evolution operators,
Generally-unbounded infinitesimal generators are studied in the context of operator topology. Beginning with the definition of seminorm, the concept of locally convex topological vector space is introduced as well as the concept of Fr{e}chet space. T
Let $R := R_{2}(p)=mathbb{C}[t^{pm 1}, u : u^2 = t(t-alpha_1)cdots (t-alpha_{2n})] $ be the coordinate ring of a nonsingular hyperelliptic curve and let $mathfrak{g}otimes R$ be the corresponding current Lie algebra. color{black} Here $mathfrak g$ is
In this paper we {em discuss} diverse aspects of mutual relationship between adjoints and formal adjoints of unbounded operators bearing a matrix structure. We emphasize on the behaviour of row and column operators as they turn out to be the germs of
It is well-known that if T is a D_m-D_n bimodule map on the m by n complex matrices, then T is a Schur multiplier and $|T|_{cb}=|T|$. If n=2 and T is merely assumed to be a right D_2-module map, then we show that $|T|_{cb}=|T|$. However, this propert